Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
естествознание.rtf
Скачиваний:
2
Добавлен:
04.08.2019
Размер:
482.65 Кб
Скачать

29.Биосистеная организация жизни.Уровни организации живой материи.

Уровни организации живой материи — иерархически соподчиненные уровни организации биосистем, отражающие уровни их усложнения. Чаще всего выделяют шесть основных структурных уровней жизни: молекулярный, клеточный, организменный, популяционно-видовой, биогеоценотический и биосферный. В типичном случае каждый из этих уровней является системой из подсистем нижележащего уровня и подсистемой системы более высокого уровня.

Следует подчеркнуть, что построение универсального списка уровней биосистем невозможно. Выделять отдельный уровень организации целесообразно в том случае, если на нем возникают новые свойства, отсутствующие у систем нижележащего уровня. К примеру, феномен жизни возникает на клеточном уровне, а потенциальное бессмертие - на популяционном[1]. При исследовании различных объектов или различных аспектов их функционирования могут выделяться разные наборы уровней организации. Например, у одноклеточных организмомеханизмы регуляции изучаемого процесса. Одним из выводов, следующих из общей теории систем является то, что биосистемы разных уровней могут быть подобны в своих существенных свойствах, например, принципах регуляции важных для их существования параметров.

30.Свойства живых веществ.

Живая система в условиях Земли - это открытая система состоящая из органичесикх в-в и их компонентов, основными из которыз являются белки и нукл. к-ты, обладающая единым метоболизмом, который обеспечивает её саморегуляцию и саомвоспроизведение.

Свойства или признаки живой системы:

1. Химичесикй состав - это органичесике в-ва.

2. Структурная сложность к-ая наблюдается на любои уровне от макромолекулы до биосферы.

3. Открытая система. Взаимодействует со внешней средой. Обмен в-в и знергии,следовательно, через живую систему идет поток в-в и энергии.

4. Метаболизм. Дыхание - чвстный случай.

5. Характерен универсалный растворитель (Вода).

6. Все реакции ферментативны и каталитически. Функцию катализаторов выполняет только белки.

7. Универсальное энергетическое в-во (АТФ).

8. Все организмы отделены от окружающей среды. Одноклеточные при помощи плазматической мембраны, многоклеточные при помощипокровных тканей, это позволяеть сохранить индивидуальность.

9. Дискретность. Взаимодействие со внешней средой на уровне одноклеточного организма при помощи зименения форм тела или организма, на уровне многоклеточного организма при помощи нервной и гуморальной систем, на уровне биогеоциноза взаимодействие со внешней средой происходит через внутривидовые и межвидовые отношения.

10. Характерны реакции матричного синтеза. (ДНК, РНК, белков).

11. Характерен универсалный генетический код.

12. Характерны наследственность, изменьчивость, размножение, онтогенез.

13. Пазитивная эволюция.

14. Характерен гомеостаз или постоянство внутренней среды.

15. Характерно разделение объема клетки или организма на отдельные объемы, в каждом из которых происходят самостоятельные процессы или реакции. На уровне одноклеточных организмов через органоиды.

16. Раздрожимость.

17. Миниатюризация. В наименьшом объеме наблюдается наибольшее кол-во функций.

18. Происхождение от единого корня.

19. Эффект увеличения массы.

32Введение.

Клетка – элементарная единица жизни на Земле. Она обладает всеми признаками живого организма: растет, размножается, обменивается с окружающей средой веществами и энергией, реагирует на внешние раздражители.

Начало биологической эволюции связано с появлением на Земле клеточных форм жизни.

Одноклеточные организмы представляют собой существующие отдельно друг от друга клетки. Тело всех многоклеточных – животных и растений – построено из большего или меньшего числа клеток, которые являются своего рода блоками, составляющими сложный организм. Независимо от того, представляет ли собой клетка целостную живую систему – отдельный организм или составляет лишь его часть, она наделена набором признаков и свойств, общим для всех клеток.

Химический состав клетки.

В клетках обнаружено около 60 элементов периодической системы Менделеева, встречающихся и в неживой природе. Это одно из доказательств общности живой и неживой природы. В живых организмах наиболее распространены водород, кислород, углерод и азот, которые составляют около 98% массы клеток. Такое обусловлено особенностями химических свойств водорода, кислорода, углерода и азота, вследствие чего они оказались наиболее подходящими для образования молекул, выполняющих биологические функции. Эти четыре элемента способны образовывать очень прочные ковалентные связи посредством спаривания электронов, принадлежащих двум атомам. Ковалентно связанные атомы углерода могут формировать каркасы бесчисленного множества различных органических молекул. Поскольку атомы углерода легко образуют ковалентные связи с кислородом, водородом, азотом, а также с серой, органические молекулы достигают исключительной сложности и разнообразия строения.

*роме четырех основных элементов в клетке в заметных количествах (10ые и 100ые доли процента) содержатся железо, калий, натрий, кальций, магний, хлор, фосфор и сера. Все остальные элементы (цинк, медь, йод, фтор, кобальт, марганец и др.) находятся в клетке в очень малых количествах и поэтому называются микроэлементами.

Химические элементы входят в состав неорганических и органических соединений. К неорганическим соединениям относятся вода, минеральные соли, диоксид углерода, кислоты и основания. Органические соединения – это белки, нуклеиновые кислоты, углеводы, жиры (липиды) и липоиды. Кроме кислорода, водорода, углерода и азота в их состав могут входить другие элементы. Некоторые белки содержат серу. Составной частью нуклеиновых кислот является фосфор. Молекула гемоглобина включает железо, магний участвует в построении молекулы хлорофилла. Микроэлементы, несмотря на крайне низкое содержание в живых организмах, играют важную роль в процессах жизнедеятельности. Йод входит в состав гормона щитовидной железы – тироксина, кобальт – в состав витамина В12. гормон островковой части поджелудочной железы – инсулин – содержит цинк. У некоторых рыб место железа в молекулах пигментов, переносящих кислород, занимает медь.

33

Клеточная теория

Клеточная теория

одно из крупных биологических обобщений, утверждающее общность происхождения, а также единство принципа строения и развития мира растений и мира животных. Согласно К. т., основным структурным элементом растений и животных является Клетка. К. т. утверждает представление о единстве всего живого и его эволюционном развитии. Ф. Энгельс назвал К. т. одним из трёх величайших открытий, обеспечивших прогресс естествознания в 19 в. (см. «Диалектика природы», 1969, с. 168).

Исторически открытие клеток и создание К. т. не совпадают. Впервые наблюдал под микроскопом клеточное строение у растений на срезах пробки и стеблей различных живых растений английский микроскопист Р. Гук, описавший свои наблюдения в сочинении «Микрография» (1665). Английский ботаник Н. Грю полагал, что стенки клеток образованы переплётом волокон, наподобие текстиля, откуда и возник термин «ткани» (1682). В 18 в. под влиянием философских идей в науку начинает проникать мысль о единстве живой природы. Попытку найти нечто общее в строении растений и животных сделал К. Ф. Вольф, но его представления об общности процессов развития «пузырьков», «зёрнышек» и «клеток» были лишь провозвестниками будущей К. т., как и идеи немецкого учёного Л. Окена о построении организмов из «пузырьков» или «инфузорий». В начале 19 в., в связи с успехами в микроскопическом изучении растений, стало ясно, что клетки — не пустоты в общей массе раститительного, вещества, а структуры, имеющие собственную оболочку; их можно изолировать друг от друга. К концу 3-го десятилетия 19 в. выяснилось, что почти все органы растений имеют клеточное строение, и в учебнике немецкого ботаника Ф. Мейена (1830) клетка уже фигурирует как общий структурный элемент тканей растений. Но клетку ещё понимали как камеру, главная часть которой составляет её оболочка, а содержимое имеет второстепенное значение. Ядро в растительной клетке описал Р. Броун (1831), но внимание к ядру привлек М. Шлейден, считавший его цитобластом — образователем клетки. По Шлейдену, из зернистой субстанции конденсируется ядрышко, вокруг которого формируется ядро, а вокруг ядра — клетка, причём ядро в процессе образования клетки исчезает. В начале 2-й четверти 19 в. работы школы чешского биолога Я. Пуркине дали большой материал по микроскопическому строению тканей животных, но в своей «теории зернышек» Пуркине не смог провести границу между различными «зернышками» (так он называл клетки, ядра, а иногда и секреторные включения).

Заслуга оформления К. т. принадлежит ученику немецкого биолога И. Мюллера — Т. Шванну, который, ознакомившись с исследованиями Шлейдена, увидел в ядре критерий для сопоставления тканевых структур животных и клеток растений. В 1839 вышло сочинение Шванна «Микроскопические исследования о соответствии в структуре и росте животных и растений» (рус. пер. 1939), в самом заглавии которого

была выражена сущность К. т. Однако Шванн продолжал считать главным компонентом клетки ее оболочку и воспринял ложное представление Шлейдена о новообразовании клеток из бесструктурного вещества (цитобластемы). Затем К. т. была распространена на одноклеточные организмы — простейших (См. Простейшие), которые были признаны свободно живущими клетками (К. Зибольд, 1848).

Дальнейшее развитие К. т. связано с открытием протоплазмы и клеточного деления. К середине 19 в. выяснилось, что главным в клетке является её «содержимое» — протоплазма. В 1858 немецкий патолог Р. Вирхов опубликовал «Целлюлярную патологию», в которой распространил К. т. на явления патологии и обратил внимание на ведущее значение ядра в клетке, провозгласив принцип образования клеток путём деления («каждая клетка из клетки»). Деление вначале трактовалось как перешнуровка ядра и клеточного тела. В 70—80-х гг. был открыт Митоз как универсальный способ клеточного деления, типичный для всех клеточных организмов. В конце 19 в. были открыты клеточные органоиды, и клетку перестали рассматривать как простой комочек протоплазмы. Вместе с тем во 2-й половине 19 в. наметилась механистическая трактовка организма как суммы клеток.

Современная К. т. исходит из единства расчленённости многоклеточных организмов на клетки и целостности организма, основанной на взаимодействии клеток. Чем сложнее организм, тем более выступает его целостность, которая у животных осуществляется нервной и гуморальной системами, а у растений — непосредственной цитоплазматической связью клеток (плазмодесмами и фитогормонами). Электронномикроскопические исследования укрепили основные положения К. т. Доказана универсальность клеточных органоидов в растительных и животных клетках. Показано, что есть организмы (Procariota), не имеющие оформленного ядра (например, бактериофаги, вирусы, отчасти бактерии, синезелёные водоросли); некоторые из них (бактерии, водоросли) часто называют клетками, исходя из наличия у них ДНК, но правильнее оставить понятие клетки за организмами, у которых ДНК оформлена в виде хромосом и находится в ядрах (Eucariota).

Лит.: Кацнельсон З. С., Клеточная теория в её историческом развитии, Л., 1963; Вермель Е. М., История учения о клетке, М., 1970.

З. С. Кацнельсон.

Развитие представлений о клеточном строении растений: 1 — клетки-пустоты в непрерывном растительном веществе (Р. Гук, 1665): 2 — стенки клеток или пузырьков построены из переплетённых волокон, образующих ткань (Н. Грю, 1682); 3 — клетки-камеры, имеющие общую стенку (начало 19 в.); 4 — каждая клетка имеет собственную оболочку (Г. Линк, И. Мольденхавер, 1812); 5 — образователь клетки — ядро («цитобласт»), исчезающее в процессе клеткообразования (М. Шлейден, 1838): 6 — клетки, состоящие из протоплазмы и ядра (Х. Моль, 1844).

34РНК

В 1978 стал преподавателем в университете Колорадо в Боулдере. Здесь Чек сделал свое главное открытие. Был первым, кто сообщил о каталитической активности РНК. Это произошло в 1982. Годом позже С.Олтмен пришел к такому же заключению.

Сложившейся центральной догмой молекулярной биологии была взаимосвязь: ДНК  РНК  фермент. Ранее считалось, что и ДНК, и РНК служат только носителями генетической информации, в то время как белки в форме ферментов катализируют химические процессы жизни. Чек и независимо от него C.Олтмен опровергли эту догму.

В 1970–1980-х годах Чек и Олтмен изучали, каким образом генетический код переносится от ДНК к РНК. Им было известно, что часть генетической информации не является обязательной и от нее надо избавиться в молекуле РНК, прежде чем та начнет использоваться клеткой. В поисках решения этой задачи Олтмен и Чек открыли, что ферментативную функцию берет на себя не белок, а каталитическая РНК.

Чек изучал молекулу РНК примитивного одноклеточного организма Tetrahymena. Он нашел, что ненужную часть можно удалить из средней части молекулы этой РНК, причем после удаления этого фрагмента оставшиеся отрезки соединяются вместе. Сенсационным было, что молекула РНК сама по себе катализирует данную реакцию. Удаленный фрагмент РНК сам себя модифицирует таким образом, что оказывается способным функционировать, помимо прочего, в роли фермента, синтезирующего РНК. Каталитическая РНК может создавать новую РНК.

Работы Олтмена и Чека показали, что каталитическая активность молекул РНК зависит от их трехмерной структуры, как это имеет место и в случае белковых ферментов.

Открытие каталитической РНК, которую называют также рибозимом, важно как для науки, так и для производства.

Каталитическая РНК, возможно, выполняет не только функцию разрезания и воссоединения РНК, но и играет главную роль во многих других биологических процессах. Химические процессы жизни часто требуют взаимодействия белок – РНК. Может быть, РНК, а не белковые ферменты играют в них ведущую роль.

Каталитическая РНК – новое мощное средство генной инженерии. Прослеживаются очевидные применения каталитической РНК в биотехнологии и медицине. Например, растения, приготовленные методом генной инженерии, можно сделать устойчивыми к воздействию вирусов, если создать рибозим, который будет разрывать и разрушать генетический материал вируса. То же представляется совершенно очевидным и при конструировании лекарств против вирусных инфекций.

Наконец, возник новый подход к истолкованию проблемы химического механизма происхождения жизни на Земле. Какая биомолекула появилась на Земле первой? Как могла возникнуть жизнь, если молекулы ДНК генетического материала могут воспроизводиться лишь с помощью белковых ферментов, в то время как сами белки могут быть построены лишь с помощью генетической информации, заключенной в ДНК?

Открытие Олтмена и Чека показало, что такой молекулой могла быть и не белковая молекула, и не молекула ДНК. Молекула РНК отвечает требуемым параметрам – она одновременно может служить и генетическим материалом, и обладать свойствами фермента.

В 1989 Чеку и С.Олтмену была присуждена Нобелевская премия «за открытие каталитических свойств РНК».

Свойством воспроизведения себе подобных обладают нуклеиновые кислоты и даже отдельные фрагменты молекулы ДНК (дезоксирибонуклеиновая) - обнаружена в 1868 г. в клеточных ядрах - являются веществом наследственности. В 1953 г. - Ф. Крик и Д. Уотсон построили модель ДНК, которая состоит из двух полимерных цепочек, закрученных одна вокруг другой с образованием двойной спирали. Согласно этой модели каждая из цепочек молекулы ДНК состоит из четырех типов мономеров - нуклеотидов. В свою очередь, в состав нуклеотидов входят три компонента, соединенные прочными химическими связями:

1) азотистое основание;

2) углевод (дезоксирибоза);

3) остаток фосфорной кислоты.

Азотистые основания - это пурины, имеющие двойное углеродно-азотное кольцо, и пиримидины. имеющие одно такое кольцо. Пурины представлены - аденином (А) и гуанином (Г), пиримидины - ти-мином (Т) и цитозином (Ц). За счет фосфорной кислоты нуклеотиды могут соединяться друг с другом за счет химической связи, образуя нуклеиновые кислоты. Модель Крика - Уотсона подтвердилась. Интересно, что спираль - самая распространенная форма во Вселенной, от атомов до галактик. Не случайно , что молекулы ДНК имеют форму двойной спирали. Эта форма выгодна в тесноте микромира. У некоторых растений длина ДНК достигает 40 м и заключается в клеточном ядре размером ~ микрон.

Функция ДНК - информационная - порядок расположения ее четырех нуклеотидов несет важную информацию, определяет порядок расположения аминокислот в линейных молекулах белков, т.е. их первичную структуру. Набор белков (ферментов, гормонов) определяет свойства клетки и организма. Молекулы ДНК хранят сведения об этих свойствах и передают их в поколениях потомков, т.е. ДНК-носитель наследственной информации.

Ген - часть ДНК.

РНК - рибонуклеиновая кислота - похожа на ДНК и тоже попоена из мономерных нуклеотидов 4 типов. Только в состав РНК вместо тимидинового нуклеотида входит похожий на него - уридиловый (У) (урацил). Также в состав РНК входит сахар - рибоза. Но Равное отличие: спираль - одинарная. РНК участвуют в реализации наследственной информации, хранящейся в ДНК, через синтез белка.

Так вот, можно ли считать молекулы ДНК носителями жизни? доказано, что самокопирование ДНК и реализация заключенной в ней информации происходит только при наличии ферментов, источников энергии - молекул АТФ. воды и других соединений. Очевидно, что отдельные молекулы нуклеиновых кислот тоже не являются живыми.

АТФ - аденозинтрифосфорная кислота - универсальный биологический аккумулятор энергии: световая энергия Солнца и энергия, заключенная в потребляемой пище, запасается в молекулах АТФ.

35дро клетки - главный центр с генетической информацией, так как в нем находятся хромосомы, содержащие наследственные признаки, закодированные в форме ДНК. Другие носители информации имеют меньшее значение.

Положение, форма и размеры ядра могут изменяться, часто параллельно с изменениями интенсивности метаболизма.

Ядро чаще всего расположено в центре клетки, и только у растительных клеток с центральной вакуолью - в пристеночной протоплазме. Оно может быть различной формы:

сферическим;

яйцевидным;

чечевицеобразным;

сегментированным (редко);

вытянутым в длину;

веретеновидным, а также иной формы.

Диаметр ядра варьирует в пределах от 0,5 мкм (у грибов) до 500 мкм (в некоторых яйцеклетках), в большинстве случаев он меньше 5 мкм.

Ядро состоит из:

нуклеоплазмы;

хромосом (хроматина);

ядрышек;

ядерной оболочки, представляющей собой часть эндоплазматического ретикулума.

Клеточные ядра образуются только из ядер. Репликация ДНК, т. е. удвоение генетической информации, гарантирует идентичность ядер, несмотря на всю сложность их деления.

Главные функции клеточного ядра следующие:

хранение информации;

передача информации в цитоплазму с помощью транскрипции, т. е. синтеза переносящей информацию и-РНК;

передача информации дочерним клеткам при репликации - делении клеток и ядер.

36.Метаболи́зм (от греч. μεταβολή — «превращение, изменение»), или обмен веществ — набор химических реакций, которые возникают в живом организме для поддержания жизни. Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды. Метаболизм обычно делят на две стадии: в ходе катаболизма сложные органические вещества деградируют до более простых; в процессах анаболизма с затратами энергии синтезируются такие вещества, как белки, сахара, липиды и нуклеиновые кислоты.

Обмен веществ происходит между клетками организма и межклеточной жидкостью, постоянство состава которой поддерживается кровообращением: за время прохождения крови в капиллярах через проницаемые стенки капилляров плазма крови 40 раз полностью обновляется с интерстициальной жидкостью. Серии химических реакций обмена веществ называют метаболическими путями, в них при участии ферментов одни биологически значимые молекулы последовательно превращаются в другие. Ферменты играют важную роль в метаболических процессах потому, что:

действуют как биологические катализаторы и снижают энергию активации химической реакции;

позволяют регулировать метаболические пути в ответ на изменения среды клетки или сигналы от других клеток.

Особенности метаболизма влияют на то, будет ли пригодна определенная молекула для использования организмом в качестве источника энергии. Так, например, некоторые прокариоты используют сероводород в качестве источника энергии, однако этот газ ядовит для животных.[1] Скорость обмена веществ также влияет на количество пищи, необходимой для организма.

Основные метаболические пути и их компоненты одинаковы для многих видов, что свидетельствует о единстве происхождения всех живых существ.[2] Например, некоторые карбоновые кислоты, являющиеся интермедиатами цикла трикарбоновых кислот присутствуют во всех организмах, начиная от бактерий и заканчивая многоклеточными организмами эукариот.[3] Сходства в обмене веществ, вероятно, связаны с высокой эффективностью метаболических путей, а также с их ранним появлением в истории эволюции.[4][5]

Аденозинтрифосфорная кислота (АТФ) — универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2–0,5%) содержится в скелетных мышцах.

Строение молекул АТФ

АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты — в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).

АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.