
- •Химия как раздел естествознания.
- •Значение химии для народного хозяйства. Понятие о материи и веществе.
- •Основное содержание атомно-молекулярного учения. Простое вещество и химический элемент.
- •Атом. Молекула. Ион.
- •Законы стехиометрии. Закон сохранения массы веществ.
- •Важнейшие классы и номенклатура неорганических веществ.
- •Ядерная модель строения атома. Квантово-механические представления о строении атома.
- •Квантовые числа.
- •Формы электронных облаков. Атомная электронная орбиталь.
- •Энергия связи. Дефект массы.
- •Периодический закон. Порядковый номер элемента.
- •«Свойства химических элементов, а также формы и свойства образуемых ими простых веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов».
- •Размеры атомов и ионов. Энергия ионизации.
- •Сродство к электрону. Электроотрицательность.
- •Типы химической связи.
- •Метод валентных связей.
- •Гибридизация атомных электронных орбиталей.
- •1877 Году Людвиг Больцман установил связь энтропии с вероятностью данного состояния. Позднее эту связь представил в виде формулы Макс Планк:
- •Основные понятия термохимии.
- •Термодинамические функции: внутренняя энергия, энтальпия.
- •Энергия Гиббса. Направленность химических процессов.
- •Скорость химических реакций в гетерогенных и гомогенных системах.
- •Зависимость скорости реакции от концентрации реагирующих веществ.
- •Зависимость скорости реакции от природы реагирующих веществ и температуры.
- •Энергия активации. Активированный комплекс.
- •Катализ. Гомогенный и гетерогенный катализ.
- •Факторы, определяющие направление протекания химических реакций.
- •Смещение химического равновесия. Принцип Ле Шателье.
- •Закон распределения. Экстракция.
- •Экстракция растворителем
- •Осмос. Закон Вант-Гоффа.
- •Давление пара растворов. Закон Рауля.
- •Составление уравнений окислительно-востановительных реакций.
- •Электрохимические процессы. Гальванический элемент Якоби-Даниэля.
- •Электронные потенциалы. Уравнение Нернста. Стандартный электродный потенциал.
- •Водородный электрод. Измерение электродных потенциалов.
- •Электролиз. Реакции на катоде и аноде при электролизе.
- •Законы Фарадея. Применение электролиза.
- •1.2. По механизму реакций взаимодействия металла со средой (химическая и электрохимическая коррозия).
- •1.3. По типу коррозионной среды
- •1.4.По характеру дополнительных воздействий
Метод валентных связей.
Осн. физ. идея В. с. м. состоит в том, что волновая ф-ция молекулы выражается через волновые ф-ции составляющих ее атомов. Образование хим. связи рассматривается как результат спаривания спинов своб. электронов атомов. Тем самым В. с. м. дает обоснование одному из осн. положений теории валентности: валентность нейтрального атома равна числу своб. электронов в его валентной оболочке. Каждому валентному штриху, соединяющему атомы А и В в структурной ф-ле молекулы, отвечает двухэлектронная ф-ция валентной связи ХАВ(1,2), к-рая представляется в виде произведения двух волновых ф-ций: пространственной Ф(1,2), симметричной относительно перестановки координат электронов, и спиновой(1,2), антисимметричной относительно такой перестановки и описывающей систему двух электронов с противоположными спинами; цифры 1 и 2 в этих обозначениях указывают пространств. координаты или спиновые переменные первого и второго электронов либо те и другие одновременно. Следовательно,
Для простейшей молекулы Н2 ф-цию Ф(1,2)
строят из 1s-орбиталей атомов Н, обозначаемых
для разных ядер как
и
а ф-цию
(1,2) - из одноэлектронных спиновых
ф-цийи(спин-функций), описывающих
состояния электронов с противоположно
направленными спинами:
Энергия молекулы, рассчитанная с такой двухэлектронной волновой ф-циеи Х(1,2), равна:
где ЕH-энергия атома Н,
-интеграл перекрывания орбиталей (dV-
элемент объема в пространстве координат
одного электрона), I и К -т. наз. кулоновский
и обменный интегралы соответственно.
Кулоновский интеграл учитывает вклад
в энергию связи, обусловленный
электростатич. взаимод. неискаженных
электронных облаков атомов между собой
и с ядром соседнего атома, обменный -
вклад, обусловленный деформацией
электронного облака при образовании
связи и перемещением его в пространство
между ядрами (> 90% энергии связи); см.
также Молекулярные интегралы.
Способы образования ковалентной связи.
Существует 2 способа образования ковалентной связи:
1. Каждый атом для образования связи использует свой неспаренный электрон Cl· + Cl· = Cl:Cl – это обменный способ или как его еще называют механизм
2. Один атом для образования химической связи использует электронную пару, у другой вакантную орбиталь NH3+H+=NH4+ - это донорно-акцепторный способ (механизм)
Направленность ковалентной связи.
Направленность ковалентной связи является результатом стремления атомов к образованию наиболее прочной связи за счет возможно большей электронной плотности между ядрами. Это достигается при такой пространственной направленности перекрывания электронных облаков, которая совпадает с их собственной. Исключение составляют s-электронные облака, поскольку их сферическая форма делает все направления равноценными. Для p- и d-электронных облаков перекрывание осуществляется вдоль оси, по которой они вытянуты, а образующаяся при этом связь называется σ-связью. σ-Связь имеет осевую симметрию, и оба атома могут вращаться вдоль линии связи, т.е. той воображаемой линии, которая проходит через ядра химически связанных атомов.
После образования между двумя атомами σ-связи для остальных электронных облаков той же формы и с тем же главным квантовым числом * остается только возможность бокового перекрывания по обе стороны от линии связи. В результате образуется π-связь. Она менее прочна, чем σ-связь: перекрывание происходит диффузными боковыми частями орбиталей. Каждая кратная связь (например, двойная или тройная) всегда содержит только одну σ-связь. Число σ-связей, которые образует центральный атом в сложных молекулах или ионах, определяет для него значение координационного числа. Например, в молекуле NH3 и ионе NH4+ для атома азота оно равно трем и четырем. Образование σ-связей фиксирует пространственное положение атомов относительно друг друга, поэтому число σ-связей и углы между линиями связи, которые называются валентными углами, определяют пространственную геометрическую конфигурацию молекул.
При оценке степени перекрывания электронных облаков следует учитывать знаки волновых функций * электронов. При перекрывании облаков с одинаковыми знаками волновых функций электронная плотность в пространстве между ядрами возрастает. В этом случае происходит положительное перекрывание, приводящее к взаимному притяжению ядер. Если знаки волновых функций противоположны, то плотность электронного облака уменьшается (отрицательное перекрывание), что приводит к взаимному отталкиванию ядер.