
- •Принцип независимости действия сил
- •Абсолютно упругий и неупругий удар
- •1)Идеальный газ
- •Классический идеальный газ
- •Квантовый идеальный газ
- •Ферми-газ
- •Бозе-газ
- •Электростатическая индукция в проводниках
- •Электростатическая индукция в диэлектриках
- •Плотность зарядов (линейная поверхностная, объемная)
- •Другие определения
- •[Править]Теплоёмкость для различных состояний вещества
- •[Править]Теория теплоёмкости
- •Майера уравнение
- •Теория теплоёмкости Эйнштейна
- •[Править]Недостатки теории
- •Модель Дебая
- •История
- •Физический смысл адиабатического процесса Работа газа
- •[Править]Внутренняя энергия идеального газа
- •[Править]Адиабатический процесс
- •[Править]Энтропия и обратимость
- •Уравнение Пуассона для идеального газа [править]Адиабата Пуассона
- •[Править]Вывод уравнения
- •Описание цикла Карно
- •[Править]кпд тепловой машины Карно
- •[Править]Связь между обратимостью цикла и кпд
- •Формулировки
- •[Править]Ограничения
- •[Править]Второе начало термодинамики и «тепловая смерть Вселенной»
- •[Править]Энтропия и критика эволюционизма
- •Общее описание
- •[Править]Уравнения Фика
- •[Править]Геометрическое описание уравнения Фика
- •Закон теплопроводности Фурье
- •[Править]Коэффициент теплопроводности вакуума
- •[Править]Связь с электропроводностью
- •[Править]Коэффициент теплопроводности газов
- •[Править]Обобщения закона Фурье
- •Сила вязкого трения
- •[Править]Вторая вязкость
- •[Править]Вязкость газов
- •[Править]Влияние температуры на вязкость газов
- •Вязкость жидкостей [править]Динамический коэффициент вязкости
- •[Править]Кинематическая вязкость
- •[Править]Ньютоновские и неньютоновские жидкости
- •[Править]Вязкость аморфных материалов
- •[Править]Физика реального газа
- •Уравнение состояния
- •Внутренняя энергия газа Ван-дер-Ваальса
- •Критические параметры
- •Приведённые параметры
- •Недостатки уравнения Ван-дер-Ваальса
- •Коэффициент k
- •[Править]Закон Кулона в квантовой механике
- •[Править]Закон Кулона с точки зрения квантовой электродинамики
- •[Править]История
- •[Править]Закон Кулона, принцип суперпозиции и уравнения Максвелла
- •[Править]Cтепень точности закона Кулона
- •[Править]Поправки к закону Кулона в квантовой электродинамике
- •[Править]Закон Кулона и поляризация вакуума
- •[Править]Закон Кулона и сверхтяжелые ядра
- •[Править]Значение закона Кулона в истории науки
- •Лектрический заряд, напряжение, потенциал
- •[Править]Принцип суперпозиции в электродинамике
- •[Править]Примеры нарушения электродинамического принципа суперпозиции
- •[Править]Отсутствие принципа суперпозиции в нелинейных теориях
- •Поток вектора напряженности электрического поля. Теорема Гаусса
- •Теорема Остроградского—Гаусса и ее применение для расчета электростатических полей
- •Равномерно заряженная бесконечная плоскость
- •Бесконечная равномерно заряженная нить
- •Разность потенциалов
- •32 Диэлектрики в электрическом поле. Вектор поляризации. Диэлектрическая восприимчивость вещества. Диэлектрическая проницаемость. Электрическое смещение.
- •Типы поляризации
- •[Править]Зависимость вектора поляризации от внешнего поля [править]в постоянном поле [править]в слабых полях
- •[Править]в сильных полях
- •[Править]в зависящем от времени поле
- •Зависимость от времени
- •[Править]Тензор поляризуемости
- •Практическое применение
- •[Править]Зависимость от частоты
- •Электроемкость. Конденсаторы
- •Проводники электричества
- •Электрические изоляторы
- •Гальванические элементы
- •Закон Ома для неоднородного участка цепи
[Править]в сильных полях
В достаточно сильных полях[2] всё описанное выше осложняется тем, что по мере роста напряженности электрического поля рано или поздно теряется линейность зависимости P от E.
Характер появляющейся нелинейности и характерная величина поля, с которой нелинейность становится заметной, тоже, конечно, зависит от индивидуальных свойств среды, условий итп.
Можно выделить их связь с типами поляризации, описанными выше.
Так для электронной и ионной поляризации при полях, приближающихся к величинам порядка отношения потенциала ионизации к характерному размеру молекулы U0/D, характерно сначала ускорение роста вектора поляризации с ростом поля (увеличение наклона графика P(E)), затем плавно переходящее в пробой диэлектрика.
Дипольная (Ориентационная) поляризация при обычно несколько более низких значениях напряженности внешнего поля — порядка kT/p (где p — дипольный момент молекулы, T — температура, k — константа Больцмана) — то есть когда энергия взаимодействия диполя (молекулы) с полем становится сравнимой со средней энергией теплового движения (вращения) диполя — наоборот начинает достигать насыщения (при дальнейшем росте напряженности поля должен рано или поздно включиться сценарий электронной или ионной поляризации, описанный выше, и кончающийся пробоем).
[Править]в зависящем от времени поле
Зависимость вектора поляризации от быстро меняющегося во времени внешнего поля достаточно сложна. Она зависит от конкретного вида изменения внешнего поля со временем, быстроты этого изменения (или, скажем, частоты колебаний) внешнего поля, превалирующего механизма поляризации в данном веществе или среде (который тоже оказывается разным для разных зависимостей внешнего поля от времени, частот и т. д.).
При достаточно медленном изменении внешнего поля поляризация в целом происходит как в постоянном поле или очень близко к этому (впрочем то, насколько медленным должно быть для этого изменение поля, зависит, и зачастую крайне сильно, от превалирующего типа поляризации и других условий, например температуры).
Одним из наиболее распространенных подходов к изучению зависимости поляризации от характера меняющегося во времени поля является исследование (теоретическое и экспериментальное) случая синусоидальной зависимости от времени внешнего поля и зависимости вектора поляризации (также меняющегося в этом случае по синусоидальному закону с той же частотой), его амплитуды и сдвига фазы от частоты.
Каждому механизму поляризации в целом соответствует тот или иной диапазон частот и общий характер зависимости от частоты.
Диапазон частот, в котором имеет смысл говорить о поляризации диэлектриков как таковой, простирается от нуля где-то до ультрафиолетовой области, в которой становится интенсивной ионизация под действием поля.
Диэлектри́ческая восприи́мчивость (или поляризу́емость) вещества — физическая величина, мера способности вещества поляризоваться под действием электрического поля. Диэлектрическая восприимчивость χe — коэффициент линейной связи между поляризацией диэлектрика P и внешним электрическим полем E в достаточно малых полях:
В системе СИ:
где ε0 — электрическая постоянная; произведение ε0χe называется в системе СИ абсолютной диэлектрической восприимчивостью.
В случае вакуума
У диэлектриков, как правило, диэлектрическая восприимчивость положительна. Диэлектрическая восприимчивость является безразмерной величиной.
Поляризуемость связана с диэлектрической проницаемостью ε соотношением:[1]
ε = 1 + 4πχ (СГС)
ε = 1 + χ (СИ)