
- •Принцип независимости действия сил
- •Абсолютно упругий и неупругий удар
- •1)Идеальный газ
- •Классический идеальный газ
- •Квантовый идеальный газ
- •Ферми-газ
- •Бозе-газ
- •Электростатическая индукция в проводниках
- •Электростатическая индукция в диэлектриках
- •Плотность зарядов (линейная поверхностная, объемная)
- •Другие определения
- •[Править]Теплоёмкость для различных состояний вещества
- •[Править]Теория теплоёмкости
- •Майера уравнение
- •Теория теплоёмкости Эйнштейна
- •[Править]Недостатки теории
- •Модель Дебая
- •История
- •Физический смысл адиабатического процесса Работа газа
- •[Править]Внутренняя энергия идеального газа
- •[Править]Адиабатический процесс
- •[Править]Энтропия и обратимость
- •Уравнение Пуассона для идеального газа [править]Адиабата Пуассона
- •[Править]Вывод уравнения
- •Описание цикла Карно
- •[Править]кпд тепловой машины Карно
- •[Править]Связь между обратимостью цикла и кпд
- •Формулировки
- •[Править]Ограничения
- •[Править]Второе начало термодинамики и «тепловая смерть Вселенной»
- •[Править]Энтропия и критика эволюционизма
- •Общее описание
- •[Править]Уравнения Фика
- •[Править]Геометрическое описание уравнения Фика
- •Закон теплопроводности Фурье
- •[Править]Коэффициент теплопроводности вакуума
- •[Править]Связь с электропроводностью
- •[Править]Коэффициент теплопроводности газов
- •[Править]Обобщения закона Фурье
- •Сила вязкого трения
- •[Править]Вторая вязкость
- •[Править]Вязкость газов
- •[Править]Влияние температуры на вязкость газов
- •Вязкость жидкостей [править]Динамический коэффициент вязкости
- •[Править]Кинематическая вязкость
- •[Править]Ньютоновские и неньютоновские жидкости
- •[Править]Вязкость аморфных материалов
- •[Править]Физика реального газа
- •Уравнение состояния
- •Внутренняя энергия газа Ван-дер-Ваальса
- •Критические параметры
- •Приведённые параметры
- •Недостатки уравнения Ван-дер-Ваальса
- •Коэффициент k
- •[Править]Закон Кулона в квантовой механике
- •[Править]Закон Кулона с точки зрения квантовой электродинамики
- •[Править]История
- •[Править]Закон Кулона, принцип суперпозиции и уравнения Максвелла
- •[Править]Cтепень точности закона Кулона
- •[Править]Поправки к закону Кулона в квантовой электродинамике
- •[Править]Закон Кулона и поляризация вакуума
- •[Править]Закон Кулона и сверхтяжелые ядра
- •[Править]Значение закона Кулона в истории науки
- •Лектрический заряд, напряжение, потенциал
- •[Править]Принцип суперпозиции в электродинамике
- •[Править]Примеры нарушения электродинамического принципа суперпозиции
- •[Править]Отсутствие принципа суперпозиции в нелинейных теориях
- •Поток вектора напряженности электрического поля. Теорема Гаусса
- •Теорема Остроградского—Гаусса и ее применение для расчета электростатических полей
- •Равномерно заряженная бесконечная плоскость
- •Бесконечная равномерно заряженная нить
- •Разность потенциалов
- •32 Диэлектрики в электрическом поле. Вектор поляризации. Диэлектрическая восприимчивость вещества. Диэлектрическая проницаемость. Электрическое смещение.
- •Типы поляризации
- •[Править]Зависимость вектора поляризации от внешнего поля [править]в постоянном поле [править]в слабых полях
- •[Править]в сильных полях
- •[Править]в зависящем от времени поле
- •Зависимость от времени
- •[Править]Тензор поляризуемости
- •Практическое применение
- •[Править]Зависимость от частоты
- •Электроемкость. Конденсаторы
- •Проводники электричества
- •Электрические изоляторы
- •Гальванические элементы
- •Закон Ома для неоднородного участка цепи
[Править]Кинематическая вязкость
В технике, в частности, при расчёте гидроприводов и в триботехнике, часто приходится иметь дело с величиной
и эта величина получила название кинематической вязкости. Здесь ρ — плотность жидкости; η — динамическая вязкость (см. выше).
Кинематическая вязкость в старых источниках часто указана в сантистоксах (сСт). В систему СИ эта величина переводится следующим образом:
1 сСт = 1мм2 / 1c = 10 − 6 м2 / c
[Править]Ньютоновские и неньютоновские жидкости
Ньютоновскими называют жидкости, для которых вязкость не зависит от скорости деформации. В уравнении Навье — Стокса для ньютоновской жидкости имеет место аналогичный вышеприведённому закон вязкости (по сути, обобщение закона Ньютона, или закон Навье):
где σi,j — тензор вязких напряжений.
Среди неньютоновских жидкостей, по зависимости вязкости от скорости деформации различают псевдопластики и дилатантные жидкости. Моделью с ненулевым напряжением сдвига (действие вязкости подобно сухому трению) является модель Бингама. Если вязкость меняется с течением времени, жидкость называется тиксотропной. Для неньютоновских жидкостей методика измерения вязкости получает первостепенное значение.
С повышением температуры вязкость многих жидкостей падает. Это объясняется тем, что кинетическая энергия каждой молекулы возрастает быстрее, чем потенциальная энергия взаимодействия между ними. Поэтому все смазки всегда стараются охладить, иначе это грозит простой утечкой через узлы.
[Править]Вязкость аморфных материалов
Вязкость аморфных материалов (например, стекла или расплавов) - это термически активизируемый процесс[4]:
где Q — энергия активации вязкости (кДж/моль), T — температура (К), R — универсальная газовая постоянная (8,31 Дж/моль·К) и A — некоторая постоянная.
Вязкое
течение в аморфных материалах
характеризуется отклонением от закона
Аррениуса: энергия
активации вязкости Q изменяется
от большой величины QH при
низких температурах (в стеклообразном
состоянии) на малую величину QL при
высоких температурах (в жидкообразном
состоянии). В зависимости от этого
изменения аморфные материалы
классифицируются либо как сильные,
когда
,
или ломкие, когда
. Ломкость аморфных
материалов численно характеризуется параметром
ломкости Доримуса
:
сильные материалы имеют RD <
2,
в то время как ломкие материалы имеют
.
Вязкость аморфных материалов весьма точно аппроксимируется двуэкспоненциальным уравнением:
с постоянными A1, A2, B, C и D, связанными с термодинамическими параметрами соединительных связей аморфных материалов.
В узких температурных интервалах недалеко от температуры стеклования Tg это уравнение аппроксимируется формулами типа VTF или сжатыми экспонентами Кольрауша.
Вязкость
Если температура существенно ниже температуры стеклования T < Tg, двуэкспоненциальное уравнение вязкости сводится к уравнению типа Аррениуса
с высокой энергией активации QH = Hd + Hm, где Hd — энтальпия разрыва соединительных связей, то есть создания конфигуронов, аHm — энтальпия их движения. Это связано с тем, что при T < Tg аморфные материалы находятся в стеклообразном состоянии и имеют подавляющее большинство соединительных связей неразрушенными.
При
двуэкспоненциальное
уравнение вязкости также сводится к
уравнению типа Аррениуса
но с низкой энергией активации QL = Hm. Это связано с тем, что при аморфные материалы находятся в расправленном состоянии и имеют подавляющее большинство соединительных связей разрушенными, что облегчает текучесть материала.
Относительная вязкость
В технических науках часто пользуются понятием относительной вязкости, под которой понимают отношение коэффициента динамической вязкости (см. выше) раствора к коэффициенту динамической вязкости чистого растворителя:
где μ — динамическая вязкость раствора; μ0 — динамическая вязкость растворителя.
Вязкость некоторых веществ
Для авиастроения и судостроения наиболее важно знать вязкости воздуха и воды.
Вязкость воздуха
Зависимость вязкости сухого воздуха от давления при температурах 300, 400 и 500 K
Вязкость воздуха зависит, в основном, от температуры. При 15.0 °C вязкость воздуха составляет 1.78×10−5 кг/(м·с), 17.8 мкПа.с или 1.78×10−5Па.с.. Можно найти вязкость воздуха как функцию температуры с помощью Программы расчёта вязкостей газов
[править]Вязкость воды
Зависимость динамической вязкости воды от температуры в жидком состоянии (Liquid Water) и в виде пара (Vapor)
Динамическая вязкость воды составляет 8.90 × 10−4 Па·с при температуре около 25 °C. Как функция температуры T (K): (Па·с) = A × 10B/(T−C) где A=2.414 × 10−5 Па·с; B = 247.8 K ; и C = 140 K.
27 Реальные газы. Молекулярное взаимодействие. Уравнение Ван-дер-Ваальса.
Материал из Википедии — свободной энциклопедии
Изотермы реального газа (схематично) Синие — изотермы при температуре ниже критической. Зелёные участки на них — метастабильные состояния. Участок левее точки F — нормальная жидкость. Точка F — точка кипения. Прямая FG — равновесие жидкой и газообразной фазы. Участок FA — перегретая жидкость. Участок F′A — растянутая жидкость (p<0). Участок AC — аналитическое продолжение изотермы, физически невозможен. Участок CG — переохлаждённый пар. Точка G — точка росы. Участок правее точки G — нормальный газ. Площади фигуры FAB и GCB равны. Красная — критическая изотерма. K — критическая точка. Голубые — сверхкритические изотермы
Реальный газ — газ, который не описывается уравнением состояния идеального газа Клапейрона — Менделеева.
Зависимости между его параметрами показывают, что молекулы в реальном газе взаимодействуют между собой и занимают определенный объём. Состояние реального газа часто на практике описывается обобщённым уравнением Менделеева — Клапейрона:
где p — давление; V - объем T — температура; Zr = Zr (p,T) — коэффициент сжимаемости газа; m - масса; М — молярная масса; R — газовая постоянная.