
- •Принцип независимости действия сил
- •Абсолютно упругий и неупругий удар
- •1)Идеальный газ
- •Классический идеальный газ
- •Квантовый идеальный газ
- •Ферми-газ
- •Бозе-газ
- •Электростатическая индукция в проводниках
- •Электростатическая индукция в диэлектриках
- •Плотность зарядов (линейная поверхностная, объемная)
- •Другие определения
- •[Править]Теплоёмкость для различных состояний вещества
- •[Править]Теория теплоёмкости
- •Майера уравнение
- •Теория теплоёмкости Эйнштейна
- •[Править]Недостатки теории
- •Модель Дебая
- •История
- •Физический смысл адиабатического процесса Работа газа
- •[Править]Внутренняя энергия идеального газа
- •[Править]Адиабатический процесс
- •[Править]Энтропия и обратимость
- •Уравнение Пуассона для идеального газа [править]Адиабата Пуассона
- •[Править]Вывод уравнения
- •Описание цикла Карно
- •[Править]кпд тепловой машины Карно
- •[Править]Связь между обратимостью цикла и кпд
- •Формулировки
- •[Править]Ограничения
- •[Править]Второе начало термодинамики и «тепловая смерть Вселенной»
- •[Править]Энтропия и критика эволюционизма
- •Общее описание
- •[Править]Уравнения Фика
- •[Править]Геометрическое описание уравнения Фика
- •Закон теплопроводности Фурье
- •[Править]Коэффициент теплопроводности вакуума
- •[Править]Связь с электропроводностью
- •[Править]Коэффициент теплопроводности газов
- •[Править]Обобщения закона Фурье
- •Сила вязкого трения
- •[Править]Вторая вязкость
- •[Править]Вязкость газов
- •[Править]Влияние температуры на вязкость газов
- •Вязкость жидкостей [править]Динамический коэффициент вязкости
- •[Править]Кинематическая вязкость
- •[Править]Ньютоновские и неньютоновские жидкости
- •[Править]Вязкость аморфных материалов
- •[Править]Физика реального газа
- •Уравнение состояния
- •Внутренняя энергия газа Ван-дер-Ваальса
- •Критические параметры
- •Приведённые параметры
- •Недостатки уравнения Ван-дер-Ваальса
- •Коэффициент k
- •[Править]Закон Кулона в квантовой механике
- •[Править]Закон Кулона с точки зрения квантовой электродинамики
- •[Править]История
- •[Править]Закон Кулона, принцип суперпозиции и уравнения Максвелла
- •[Править]Cтепень точности закона Кулона
- •[Править]Поправки к закону Кулона в квантовой электродинамике
- •[Править]Закон Кулона и поляризация вакуума
- •[Править]Закон Кулона и сверхтяжелые ядра
- •[Править]Значение закона Кулона в истории науки
- •Лектрический заряд, напряжение, потенциал
- •[Править]Принцип суперпозиции в электродинамике
- •[Править]Примеры нарушения электродинамического принципа суперпозиции
- •[Править]Отсутствие принципа суперпозиции в нелинейных теориях
- •Поток вектора напряженности электрического поля. Теорема Гаусса
- •Теорема Остроградского—Гаусса и ее применение для расчета электростатических полей
- •Равномерно заряженная бесконечная плоскость
- •Бесконечная равномерно заряженная нить
- •Разность потенциалов
- •32 Диэлектрики в электрическом поле. Вектор поляризации. Диэлектрическая восприимчивость вещества. Диэлектрическая проницаемость. Электрическое смещение.
- •Типы поляризации
- •[Править]Зависимость вектора поляризации от внешнего поля [править]в постоянном поле [править]в слабых полях
- •[Править]в сильных полях
- •[Править]в зависящем от времени поле
- •Зависимость от времени
- •[Править]Тензор поляризуемости
- •Практическое применение
- •[Править]Зависимость от частоты
- •Электроемкость. Конденсаторы
- •Проводники электричества
- •Электрические изоляторы
- •Гальванические элементы
- •Закон Ома для неоднородного участка цепи
[Править]Связь с электропроводностью
Связь коэффициента теплопроводности K с удельной электрической проводимостью σ в металлах устанавливает закон Видемана — Франца:
где k — постоянная Больцмана, e — заряд электрона.
[Править]Коэффициент теплопроводности газов
Коэффициент теплопроводности газов определяется формулой[2]
Где: i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5, для одноатомного i=3), k — постоянная Больцмана, M — молярная масса, T — абсолютная температура, d — эффективный диаметр молекул, R — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — уводорода, минимальная — у радона, из не радиоактивных газов - у ксенона).
[Править]Обобщения закона Фурье
Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье не применим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т.п. Инерционность в уравнения переноса первым ввел Максвелл[3], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[4]
Если время релаксации τ пренебрежимо мало, то это уравнение переходит в закон Фурье.
Вя́зкость (вну́треннее тре́ние) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей — это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.
Различают динамическую вязкость (единицы измерения: пуаз, 0,1Па·с) и кинематическую вязкость (единицы измерения: стокс, м²/с, внесистемная единица — градус Энглера). Кинематическая вязкость может быть получена как отношение динамической вязкости к плотности вещества и своим происхождением обязана классическим методам измерения вязкости, таким как измерение времени вытекания заданного объёма через калиброванное отверстие под действием силы тяжести.
Прибор для измерения вязкости называется вискозиметром.
Сила вязкого трения
Сила вязкого трения пропорциональна скорости относительного движения V тел, пропорциональна площади S и обратно пропорциональна расстоянию между плоскостями h.
Коэффициент пропорциональности, зависящий от сорта жидкости или газа, называют коэффициентом динамической вязкости. Самое важное в характере сил вязкого трения то, что тела при наличии сколь угодно малой силы со временем обязательно придут в движение, то есть не существует трения покоя. Это отличает вязкое трение от сухого.