
- •Принцип независимости действия сил
- •Абсолютно упругий и неупругий удар
- •1)Идеальный газ
- •Классический идеальный газ
- •Квантовый идеальный газ
- •Ферми-газ
- •Бозе-газ
- •Электростатическая индукция в проводниках
- •Электростатическая индукция в диэлектриках
- •Плотность зарядов (линейная поверхностная, объемная)
- •Другие определения
- •[Править]Теплоёмкость для различных состояний вещества
- •[Править]Теория теплоёмкости
- •Майера уравнение
- •Теория теплоёмкости Эйнштейна
- •[Править]Недостатки теории
- •Модель Дебая
- •История
- •Физический смысл адиабатического процесса Работа газа
- •[Править]Внутренняя энергия идеального газа
- •[Править]Адиабатический процесс
- •[Править]Энтропия и обратимость
- •Уравнение Пуассона для идеального газа [править]Адиабата Пуассона
- •[Править]Вывод уравнения
- •Описание цикла Карно
- •[Править]кпд тепловой машины Карно
- •[Править]Связь между обратимостью цикла и кпд
- •Формулировки
- •[Править]Ограничения
- •[Править]Второе начало термодинамики и «тепловая смерть Вселенной»
- •[Править]Энтропия и критика эволюционизма
- •Общее описание
- •[Править]Уравнения Фика
- •[Править]Геометрическое описание уравнения Фика
- •Закон теплопроводности Фурье
- •[Править]Коэффициент теплопроводности вакуума
- •[Править]Связь с электропроводностью
- •[Править]Коэффициент теплопроводности газов
- •[Править]Обобщения закона Фурье
- •Сила вязкого трения
- •[Править]Вторая вязкость
- •[Править]Вязкость газов
- •[Править]Влияние температуры на вязкость газов
- •Вязкость жидкостей [править]Динамический коэффициент вязкости
- •[Править]Кинематическая вязкость
- •[Править]Ньютоновские и неньютоновские жидкости
- •[Править]Вязкость аморфных материалов
- •[Править]Физика реального газа
- •Уравнение состояния
- •Внутренняя энергия газа Ван-дер-Ваальса
- •Критические параметры
- •Приведённые параметры
- •Недостатки уравнения Ван-дер-Ваальса
- •Коэффициент k
- •[Править]Закон Кулона в квантовой механике
- •[Править]Закон Кулона с точки зрения квантовой электродинамики
- •[Править]История
- •[Править]Закон Кулона, принцип суперпозиции и уравнения Максвелла
- •[Править]Cтепень точности закона Кулона
- •[Править]Поправки к закону Кулона в квантовой электродинамике
- •[Править]Закон Кулона и поляризация вакуума
- •[Править]Закон Кулона и сверхтяжелые ядра
- •[Править]Значение закона Кулона в истории науки
- •Лектрический заряд, напряжение, потенциал
- •[Править]Принцип суперпозиции в электродинамике
- •[Править]Примеры нарушения электродинамического принципа суперпозиции
- •[Править]Отсутствие принципа суперпозиции в нелинейных теориях
- •Поток вектора напряженности электрического поля. Теорема Гаусса
- •Теорема Остроградского—Гаусса и ее применение для расчета электростатических полей
- •Равномерно заряженная бесконечная плоскость
- •Бесконечная равномерно заряженная нить
- •Разность потенциалов
- •32 Диэлектрики в электрическом поле. Вектор поляризации. Диэлектрическая восприимчивость вещества. Диэлектрическая проницаемость. Электрическое смещение.
- •Типы поляризации
- •[Править]Зависимость вектора поляризации от внешнего поля [править]в постоянном поле [править]в слабых полях
- •[Править]в сильных полях
- •[Править]в зависящем от времени поле
- •Зависимость от времени
- •[Править]Тензор поляризуемости
- •Практическое применение
- •[Править]Зависимость от частоты
- •Электроемкость. Конденсаторы
- •Проводники электричества
- •Электрические изоляторы
- •Гальванические элементы
- •Закон Ома для неоднородного участка цепи
Описание цикла Карно
Цикл Карно в координатах P и V
Цикл Карно в координатах T и S
Пусть тепловая машина состоит из нагревателя с температурой TH, холодильника с температурой TX и рабочего тела.
Цикл Карно состоит из четырёх стадий:
Изотермическое расширение (на рисунке — процесс A→Б). В начале процесса рабочее тело имеет температуру TH, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты QH. При этом объём рабочего тела увеличивается.
Адиабатическое (изоэнтропическое) расширение (на рисунке — процесс Б→В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.
Изотермическое сжатие (на рисунке — процесс В→Г). Рабочее тело, имеющее к тому времени температуру TX, приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты QX.
Адиабатическое (изоэнтропическое) сжатие (на рисунке — процесс Г→А). Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.
При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия:
при δQ =
0.
Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия).
[Править]кпд тепловой машины Карно
Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно
.
Аналогично, при изотермическом сжатии рабочее тело отдало холодильнику
.
Отсюда коэффициент полезного действия тепловой машины Карно равен
.
Из последнего выражения видно, что КПД тепловой машины Карно зависит только от температур нагревателя и холодильника. Кроме того, из него следует, что КПД может составлять 100 % только в том случае, если температура холодильника равна абсолютному нулю. Это невозможно, но не из-за недостижимости абсолютного нуля (этот вопрос решается только третьим началом термодинамики, учитывать которое здесь нет необходимости), а из-за того, что такой цикл или нельзя замкнуть, или он вырождается в совокупность двух совпадающих адиабат и изотерм.
Поэтому максимальный КПД любой тепловой машины, будет меньше или равен КПД тепловой машины Карно, работающей при тех же температурах нагревателя и холодильника. Например, КПД идеального цикла Стирлинга равен КПД цикла Карно.
[Править]Связь между обратимостью цикла и кпд
Для того, чтобы цикл был обратимым, из него должна быть исключена передача тепла при наличии разности температур (так как такие процессы необратимы в силу постулата Томсона). Значит, передача тепла должна осуществляться либо в изотермическом процессе (как в цикле Карно), либо в эквидистантном процессе (обобщённый цикл Карно или, для примера, его частный случайЦикл Брайтона). Для того, чтобы менять температуру рабочего тела от температуры нагревателя до температуры холодильника и обратно, необходимо использовать либо адиабатические процессы (они идут без теплообмена и, значит, не влияют на энтропию), либо циклы с регенерацией тепла при которых нет передачи тепла при разности температур. Мы приходим к выводу, что любой обратимый цикл может быть сведён к циклу Карно.
Примером обратимого цикла, не являющегося циклом Карно, но интегрально совпадающим с ним, является идеальный цикл Стирлинга: в двигателе Стирлинга добавлен регенератор, обеспечивающий полное приближение цикла к циклу Карно с достижением обратимости и тех же величин КПД.
Если же в цикле возникает передача тепла при наличии разности температур, а таковыми являются все технические реализации термодинамических циклов, то цикл утрачивает свойство обратимости. Иначе говоря, посредством отведённой в цикле механической работы становится невозможным получить исходную теплоту. КПД такого цикла будет всегда меньше чем КПД цикла Карно.
25 Второе начало термодинамики. Термодинамическое тождество.
торое начало термодинамики — физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.
Второе начало термодинамики гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.
Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая что коэффициент полезного действияне может равняться единице, поскольку для кругового процесса температура холодильника не должна равняться 0.
Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.