
- •Расчетно-графическая работа
- •4Группы,7 подгруппы
- •1. Способы создания презентации. Режимы просмотра. Форматирование презентации.
- •Возможности программы презентации
- •Рекомендации по созданию презентации
- •2. Перевод чисел в десятичную систему счисления.
- •3. Выполнение вычитания.
- •4. Сложение чисел.
- •5. Ввод и редактирование текста, работа с блоками, форматирование абзацев, списки.
- •Биография
- •6. Работа с таблицами. Вычисления в таблицах. Встроенные функции в Word.
- •Финансирование годового бизнес-плана по месяцам
- •7. Работа с графикой. Внедрение и связывание графических объектов.
- •8. Работа с приложением ms Equation (математические формулы).
7. Работа с графикой. Внедрение и связывание графических объектов.
8. Работа с приложением ms Equation (математические формулы).
Элементарные функции — функции, которые можно получить с помощью конечного числа арифметических действий и композиций из следующих основных элементарных функций:
многочлен,
рациональная,
степенная,
показательная и логарифмическая,
тригонометрические и обратные тригонометрические.
Каждую элементарную функцию можно задать формулой, то есть набором конечного числа символов, соответствующих используемым операциям. Все элементарные функции непрерывны на своей области определения. Иногда к основным элементарным функциям относят также гиперболические и обратные гиперболические функции, хотя они могут быть выражены через перечисленные выше основные элементарные функции. Элементарные функции разделяются на алгебраические и трансцендентные.
Элементарные
функции по Лиувиллю - рассматривая
функции комплексного переменного,
Лиувилль определил элементарные функции
несколько шире. Элементарная функция
y
переменной x —
аналитическая функция, которая может
быть представлена как алгебраическая
функция
от
x
и функций
,
причём z1
является логарифмом или экспонентой
от некоторой алгебраической функции
g1
от x,
z2
является логарифмом или экспонентой
от некоторой алгебраической функции
g2
от x
и z1(x)
и так далее. Не ограничивая общности
рассмотрения, можно считать функции
алгебраически независимы, то есть если
алгебраическое уравнение
,
выполняется для всех x,
то все коэффициенты полинома
равны
нулю.
Дифференцирование элементарных функций- элементарные функции бесконечно дифференцируемы всюду, где они определены. При этом производная элементарной функции всегда является элементарной функцией и может быть найдена за конечное число действий. Именно, по правилу дифференцирования сложной функции
где z1'(z) равно или g1' / g1 или z1g1' в зависимости от того, логарифм ли z1 или экспонента и т. д. На практике удобно использовать таблицу производных.
Интегрирование элементарных функций - Интеграл элементарной функции не всегда сам является элементарной функцией. Наиболее распространённые функции, интегралы которых найдены, собраны в таблице интегралов. В общем случае имеет место теорема:
Теорема Лиувилля. Если интеграл от элементарной функции сам является элементарной функцией, то он представим в виде
где Ai — некоторые комплексные числа, а ψi — алгебраические функции своих аргументов.
Доказательство этой теоремы Лиувилль основал на следующем принципе. Если интеграл от y берётся в элементарных функциях, то верно
где
ψ —
алгебраическая функция, zr
+ 1 —
логарифм или экспонента алгебраической
функции
и т. д.
Функции
являются
алгебраически независимыми и удовлетворяют
некоторой системе дифференциальных
уравнений вида
где
ρi —
алгебраические функции своих аргументов.
Если
—
семейство решений этой системы, то
откуда
Для некоторых классов интегралов эта теорема позволяет весьма просто исследовать разрешимость в элементарных функциях задачи об интегрировании.
Интегрирование алгебраических функций - наиболее сложным оказался вопрос об интегрировании в элементарных функциях функций алгебраических, то есть о взятии абелевых интегралов, которому посвящены обширные исследования Вейерштрасса, Пташицкого и Риша.
Теорема Лиувилля является основой для создания алгоритмов символьного интегрирования элементарных функций, реализуемых, напр., в Maple.
Вычисление
пределов - теория
Лиувилля не распространяется на
вычисление пределов. Неизвестно,
существует ли алгоритм, который по
заданной элементарной формулой
последовательности даёт ответ, имеет
ли она предел или нет. Например, открыт
вопрос о том, сходится ли последовательность
.
Список использованной литературы
1. С. Б. Гашков. “Системы счисления и их применение” .М.: МЦНМО, 2004. — 52 с.: ил.
2. Макарова Н.В. “Информатика”. М. Статистика и финансы, 2005. с. 768.
3. Хмельник С.И. “Кодирование комплексных чисел и векторов”, изд. «Mathematics in Computers», Израиль, 2004.
4. А. Г. Хованский. “Топологическая теория Галуа: разрешимость и неразрешимость уравнений в конечном виде” Гл. 1. M, 2007.
5. М.А. Булгаков “Мастер и Маргарита” М: Чувашское книжное издательство,1990. с. 367.
6. Яновская Л. М. Записки о Михаиле Булгакове / Л. Яновская. — М.: Параллели, 2002. — 413, [2] с.
7. Варламов А. Н. Михаил Булгаков / Алексей Варламов. — М.: Молодая гвардия, 2008. — 838, [2] с. — (Жизнь замечательных людей: серия биографий / основана в 1890 г. Ф. Павленковым и продолжена в 1933 г. М. Горьким; Вып. 1339 (1139)).