Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Зубчатые передачи.docx
Скачиваний:
4
Добавлен:
31.07.2019
Размер:
1.21 Mб
Скачать

Работа и мощность при вращательном движении

Часто встречаются детали машин, вращающиеся вокруг неподвижных осей. Причиной вращательного движения является приложенный к телу вращающий момент относительно оси, который создается парой сил или силой F (рис. 137) и определяется по формуле M = F .D/2.

При повороте тела (рис. 137) на малый угол dφ работа совершается силой F, точка приложения которой перемещается из положения C1 в положение C2. Полное перемещение точки приложения силы равно длине дуги d s = R dφ радиусом R.

Так как сила F все время направлена по касательной к перемещению s, то совершаемая ею работа определится как произведе­ние силы на перемещение

dW = F ds = FR dφ = F D/2 dφ.

Произведение силы на радиус определяет вращающий момент, т. е. F D/2 = M. Учитывая это, окончательно  находим dW = M dφ. Интегрируя, получим W = M φ. (164)

Работа вращающего момента равна произведению момента на угол поворота.

Определим мощностьпри вращательном движении

Мощность при вращательном движении тела равна произведению вращающего момента (момента пары) на угловую скорость.

Подставив в выражение мощности значение угловой скорости, выраженной через частоту вращения (об/мин)  , получим

откуда

При данной мощности двигателя максимальный вращающий момент, который двигатель способен развить, можно изменить путем варьирования частоты вращения. Уменьшая частоту вра­щения, увеличивают вращающий момент и, наоборот, увеличивая частоту вращения, вращающий момент уменьшают.

Пример. Определить численные значения силы, приложенной к ободу шкива (рис. 137), если она передает мощность Р = 4 кВт при числе оборотов п = 60 об/мин, диаметр шкива В = 0,5 м.

Решение. На основании уравнения (166) находим вращающий момент Мвр = 9,55 Р/п, кроме того, Мвр = F D/2 Приравнивая значения моментов, находим силу F

Если алгебраическая сумма проекций на какую либо ось всех действующих сил системы ровна 0, то проекция её вектора количества движения на эту ось есть величена постоянная.

Двухступенчатый редуктор

Механическая передача – это особый механизм, посредством которого осуществляется передача крутящего момента от приводного двигателя к исполнительному механизму. Для осуществления синхронизации угловых скоростей вращения вала двигателя и вала исполнительного механизма применяются различные устройства, в общем именуемые редукторами. Редуктор преобразовывает высокую скорость вращения вала двигателя в более низкую и при этом пропорционально повышается крутящий момент. Это позволяет при помощи маломощного моторчика приводить в движение значительные массы и механизмы, требующие низкую скорость движения, но большую тягу.

 

Существует много разных типов редукторов. Необходимость создания разных конструкций продиктовано требованиями по эксплуатационным характеристикам и областью применения данного редуктора. Но общее назначение редукторов одно и то же.

 Также для применения в сложных конструкциях, требующих изменения передаточного отношения в широких пределах, применяют либо особые конструкции, либо редукторы с более чем одной ступенью. Одними из самых популярных редукторов с более чем одной ступенью являются двухступенчатые редукторы.

 Своей популярностью двухступенчатые редукторы обязаны своей конструкции, в которую заложены все достоинства многоступенчатых коробок передач и одноступенчатых редукторов. Благодаря применению двух ступеней передаточное отношение больше не является фиксированным значением и его можно изменять по мере необходимости. Также можно отметить тот факт, что методика расчёта таких конструкций общедоступна и широко известна даже не профессионалам, вследствие чего подобные устройства широко применяются и особенно популярны.

 Так как двухступенчатым редуктором может быть любой тип редукторов, включая ременный, цепной, червячный, винтовой и другие, то методики расчёта для каждого типа используются разные. В качестве простого примера таких расчётов можно привести приблизительный расчёт корпуса редуктора.

 Корпуса редукторов чаще всего изготавливают методом литья. Исключения составляют лишь те варианты, которые собраны вручную в единственном экземпляре. Такие редукторы имеют сварные корпуса. Для серийных же моделей, используют литые конструкции и для расчётов толщины стенок корпуса, с учётом  необходимой прочности и жёсткости кузова, а также отвечающие требованиям этой технологии используется простая формула:

 δ = 1.3 х (Т(тихоходная ступень))1/4 , где Т – крутящий момент в Нм. Желательно к полученному значению прибавлять ещё 1-2 мм для страховки.

В местах, где крепятся различные внутренние детали, толщину следует увеличить в полтора раза.

 Стенки, сопрягающиеся под прямым углом, соединяются сопряжением радиусом равным половине толщины стенки. Стенки, встречающиеся под углом больше девяноста градусов, сопрягают радиусом в полтора раза большим, чем толщина стенки. Корпус внутри обязательно должен иметь рёбра жёсткости в достаточном количестве для увеличения прочности, а также из-за неравномерного охлаждения металла, и минимальная толщина определяется умножением толщины стенок на коэффициент равный 0,8. Поверхности, требующие последующей обработки для монтажа и крепежей, выполняют в виде платиков и высоту таких платиков рассчитывают исходя из толщины стенки корпуса, а именно половины её толщины. Толщину крышки можно брать меньше толщины стенки на 2-4 мм. Крепление крышки необходимо рассчитывать исходя из крутящего момента на выходном валу для обеспечения достаточной прочности и надёжности конструкции. Диаметр винтов крепления крышки рассчитывается по формуле:

 

d = 1.25 х (Т(тихоходная ступень))1/3, где Т – крутящий момент в Нм. Округление происходит всегда в большую сторону. Винты крепления корпуса редуктора к раме устройства, в составе которого он будет работать, также рассчитываются в зависимости от крутящего момента и условно принимаются 1.25 раза более толстыми, чем болты для крепления крышки редуктора. Ниша крепления корпуса к раме берётся в два с половиной раза более толстой, чем диаметр винтов крепления корпуса к раме. Также следует учесть поправочные коэффициенты при расчётах с поправкой на марку стали, степень прочности и другие характеристики.

 

Также необходимо учесть то, что в двухступенчатых редукторах существует две ступени, и при расчётах необходимо брать крутящий момент на том валу, который окажется большим. Это одно из главных условий при расчёте корпусов, по причине того, что такая грубейшая ошибка в расчётах может, в конечном счете, привести к выходу из строя редуктора, или даже всего устройства, частью которого является этот редуктор.

 

Расчёт и строение внутреннего механизма редуктора выходит за рамки описания данной статьи. Подробную информацию о каждом из них следует искать в соответствующих справочниках. Но можно привести основное соотношение, которое используется в любых технологиях расчёта: передаточное отношение i равно отношению угловой скорости ведущего вала к угловой скорости ведомого вала. Для двухступенчатых систем подобное соотношение имеет место для каждых сопряжённых пар зубчатых колёс, либо шестерней.