Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по цитологии.docx
Скачиваний:
15
Добавлен:
30.07.2019
Размер:
112.92 Кб
Скачать

17. Строение и функции немембранных структур клетки

В эту группу органоидов входят рибосомы, микротрубочки и микрофиламенты, клеточный центр.

Рибосома Это округлая рибонуклеопротеиновая частица. Диаметр ее составляет 20—30 нм. Состоит рибосома из большой и малой субъединиц, которые объединяются в присутствии нити м-РНК (матричной, или информационной, РНК). Комплекс из группы рибосом, объединенных одной молекулой м-РНК наподобие нитки бус, называется полисомой. Эти структуры либо свободно расположены в цитоплазме, либо прикреплены к мембранам грануляр­ной ЭПС (в обоих случаях на них активно протекает синтез белка).

Полисомы гранулярной ЭПС образуют белки, выводимые из клетки и используемые для нужд всего организма (например, пищеварительные ферменты, белки женского грудного молока). Кроме этого, рибосомы присутствуют на внутренней поверхности мембран митохондрий, где также принимают активное участие в синтезе белковых молекул.

Микротрубочки Это трубчатые полые образования, лишенные мембраны. Внешний диаметр составляет 24 нм, ширина просвета — 15 нм, толщина стенки — около 5 нм. В свободном состоянии представлены в цитоплазме, также являются структурными элементами жгутиков, центриолей, веретена деления, ресничек. Микротрубочки построены из стереотипных белковых субъединиц путем их полимеризации. В любой клетке процессы полимеризации идут параллельно процессам деполимеризации. Причем соотношение их определяется количеством микротрубочек. Микротрубочки имеют различную устойчивость к разрушающим их факторам, например, к колхицину (это химическое вещество, вызывающее деполимеризацию).

Функции микротрубочек:

1) являются опорным аппаратом клетки;

2) определяют формы и размеры клетки;

3) являются факторами направленного перемещения внутриклеточных структур.

Микрофиламенты

Это тонкие и длинные образования, которые обнаруживаются по всей цитоплазме. Иногда образуют пучки.

Виды микрофиламентов:

1) актиновые. Содержат сократительные белки (актин), обеспечивают клеточные формы движения (например, амебоидные), играют роль клеточного каркаса, участвуют в организации пе­ремещений органелл и участков цитоплазмы внутри клетки;

2) промежуточные (толщиной 10 нм). Их пучки обнаруживаются по периферии клетки под плазмалеммой и по окружности ядра. Выполняют опорную (каркасную) роль. В разных клетках (эпителиальных, мышечных, нервных, фибробластах) построены из разных белков.

Микрофиламенты, как и микротрубочки, построены из субъединиц, поэтому их количество определяется соотношением процессов полимеризации и деполимеризации.

Клетки всех животных, некоторых грибов, водорослей, высших растений характеризуются наличием клеточного центра. Клеточный центр обычно располагается рядом с ядром.

Он состоит из двух центриолей, каждая из которых представляет собой полый цилиндр диаметром около 150 нм, длиной 300—500 нм.

Центриоли расположены взаимоперпендикулярно. Стенка каждой центриоли образована 27 микротрубочками, состоящими из белка тубулина. Микротрубочки сгруппированы в 9 триплетов.

Из центриолей клеточного центра но время деления клетки образуются нити веретена деления.

Центриоли поляризуют процесс деления клаки, чем достигается равномерное расхождение сестринских хромосом (хроматид) в анафазе митоза.

18. Микрофиламенты (актиновые микрофиламенты, МФ) — нити, состоящие из молекул глобулярного белка актина и присутствующие в цитоплазме всех эукариотических клеток. В мышечных клетках их также называют «тонкие филаменты» (толстые филаменты мышечных клеток состоят из белка миозина). Под плазматической мембраной микрофиламенты образуют трёхмерную сеть, в цитоплазме клетки формируют пучки из параллельно ориентированных нитей или трехмерную сеть. Имеют диаметр около 6-8 нм.

Микрофиламенты состоят из двух перекрученных цепочек из молекул глобулярного белка актина, имеют диаметр около 7-8 нм. Как и микротрубочки (и в отличие от промежуточных филаментов), микрофиламенты обладают полярностью. Это означает, что два их конца (обозначаемые как + -конец и — -конец) неравноценны по своему строению, способности присоединять новые молекулы актина и другим свойствам. В мышечных клетках + -концы МФ прикрепляются к Z-линиям саркомеров, — -концы свободны.

Промежуточные филаменты (ПФ) — нитевидные структуры из особых белков, один из трех основных компонентов цитоскелета клеток эукариот. Содержатся как в цитоплазме, так и в ядре большинства эукариотических клеток. Средний диаметр ПФ — около 10 нм (9-11 нм), меньше, чем у микротрубочек (около 25 нм) и больше, чем у актиновых микрофиламентов (5-9 нм). Название получили из-за того, что толщина цитоскелетных структур, состоящих из ПФ, занимала промежуточное положение между толщиной миозиновых филаментов и микротрубочек[1]. В ядре известен только один тип ПФ — ламиновых, остальные типы — цитоплазматические. Доменная структура белковых молекул ПФ довольно консервативна. Полипептид обычно имеет два глобулярных домена на N- и C-концах, которые соединены протяженным суперскрученным палочковидным доменом, состоящим из альфа-спиралей. Основной строительный блок филамента — димер, а не мономер. Он образован двумя полипептидными цепями, обычно двух разных белков, которые взаимодействуют между собой своими палочковидными доменами, образующими двойную суперскрученную спираль. Цитоплазматические ПФ образованы из таких димеров, образующих неполярные нити, толщиной в один блок. Отсутствие полярности у ПФ обусловлено антипараллельной ориентацией димеров в тетрамере. Из них далее образуются более сложные структуры, в которых ПФ могут уплотняться, вследствие чего имеют непостоянный диаметр.В отличие от актина и тубулина белки ПФ не имеют сайта сязывания нуклеозидтрифосфатов.17/2. Структура и функции Цитоскелет выполняет три главные функции.

  1. Служит клетке механическим каркасом, который придает клетке типическую форму и обеспечивает связь между мембраной и органеллами. Каркас представляет собой динамичную структуру, которая постоянно обновляется по мере изменения внешних условий и состояния клетки.

2. Действует как «мотор» для клеточного движения. Двигательные (сократительные) белки содержатся не только в мышечных клетках (см. с. 324), но и в других тканях. Компоненты цитоскелета определяют направление и координируют движение, деление, изменение формы клеток в процессе роста, перемещение органелл, движение цитоплазмы.

3. Служит в качестве «рельсов» для транспорта органелл и других крупных комплексов внутри клетки.

СИСТЕМА МИКРОТРУБОЧЕК

Микротрубочки представляют цилиндры диаметром 25 нанометров с полостью внутри. Их стенка образована мономерами тубулина. Микротрубочки, подобно актиновым микрофиламентам, полярны: полимеризация из мономеров идет легче на плюс-конце, чем на минус-конце. Система микротрубочек, в отличие от актинового кортекса, в большинстве клеток строго централизована: в то время как в кортексе может работать одновременно множество центров полимеризации, из которых растут новые микрофиламенты, микротрубочки часто имеют лишь 1 - 2 центра полимеризации на клетку. Эти центры, организующие микротрубочки (ЦОМТ), хорошо видны не только под электронным, но и под световым микроскопом. Практически все микротрубочки в клетках растут из этих центров плюс-концами к периферии, и поэтому системы микротрубочек часто имеют вид звезд. Наиболее распространенные варианты ЦОМТ - центросомы, из которых растет митотическое веретено и "звезды" микротрубочек во многих клетках, а также базальные тельца, из которых растут микротрубочки жгутиков и ресничек (рис. 5). Замечательное свойство этих центров, что они способны репродуцироваться: новый центр вырастает рядом со старым и затем "материнский" и дочерний центры расходятся. Долго искали в центрах ДНК, но не нашли. Удвоение центров, видимо, имеет совсем особый механизм, отличный от удвоения ДНК, но природу его мы еще не знаем.

Как уже говорилось, микротрубочки разных структур сильно различаются по стабильности. Если инъецировать в клетки раствор тубулина, меченного флуоресцентной краской, то микротрубочки становятся окрашенными, и в флуоресцентный микроскоп можно непосредственно наблюдать, как отдельные микротрубочки быстро растут от центра к периферии, затем быстро укорачиваются, иногда исчезают совсем, опять растут и т.д. (см. рис. 2). Эта смена фаз роста и укорочения - характерная черта систем нестабильных микротрубочек. У многих стабильных микротрубочек, например, в жгутиках сохраняется постоянная длина. Большую или меньшую стабильность придают микротрубочкам особые белки, связывающиеся с их наружной стенкой и укрепляющие ее.

Некоторые растения образуют специальные яды - вещества, которые избирательно нарушают динамику микротрубочек в самых разных типах клеток. Большая группа таких веществ (колхицин, колцемид, винбластин) деполимеризует нестабильные микротрубочки. Точнее говоря, молекулы этих веществ присоединяются к мономерам тубулина и блокируют рост микротрубочек. При этом их распад продолжается, и через короткое время все микротрубочки исчезают. В частности, у таких клеток в митозе исчезает митотическое веретено и хромосомы не могут разойтись к полюсам, поэтому деление клеток не завершается. Естественно, стабильные микротрубочки в жгутиках мало чувствительны к действию этих веществ.

19. В клетках животных вблизи ядра находится органоид, который называют клеточным центром. Клеточный центр был открыт в дробящихся клетках морского ежа. В последующие годы клеточный центр был обнаружен во всех клетках животных организмов и низших растений. В клетках высших растений он не выявлен. Клеточный центр состоит из крупного шаровидного тела, носящего название ЦЕНТРОСФЕРЫ. Внутри центросферы располагаются два интенсивно окрашивающихся плотных тельца - ЦЕНТРИОЛИ, связанные между собой перемычкой - ЦЕНТРОДЕСМОЗОЙ. В некоторых клетках от центриолей радиально расходятся, прободая центросферу и выходя в цитоплазму, тонкие тяжи, составляющие лучистую сферу. Центросфера обладает высокой плотностью, о чем можно судить по тому, что, располагаясь около ядра, она образует в примыкающей к ней стенке ядра вдавление. С химической стороны центросфера - белковое тело, в котором каких-либо специфических веществ обнаружить не удалось. Липидов центросфера не содержит, так как хорошо сохраняется после любых фиксаций, в том числе и растворяющих жиры.

При электронно-микроскопическом исследования центриоль имеет форму открытого с двух сторон цилиндра диаметром 0,1 и длиной 0,3-0,6 мк. Стенка цилиндра состоит из 9 пар тончайших волоконец, расположенных вокруг его центрального просвета. Клеточный центр является постоянным органоидом клетки. Он расположен чаще всего около ядра, а в некоторых случаях - даже в самом непосредственном соседстве с ним. Предполагают, что основная часть клеточного центра - центриоль - размножается путем деления надвое посредством перетяжки. В многоядерных клетках клеточный центр иметь несколько центриолей - по числу ядер. Однако возможно и новообразование клеточного центра со всеми ему присущими структурами. При разрушении клеточного центра иглой микроманипулятора через некоторое время он возникает заново. Действие наркотических веществ может повлиять на клетку таким образом, что возникает множество клеточных центров типичной структуры. Центриоли играют важную роль при делении клетки; они участвуют в образовании веретена деления.