
Задача 6.6
Имеются следующие данные о численности населения города за 5 лет (на начало года):
Год |
2003 |
2004 |
2005 |
2006 |
2007 |
Численность населения, тыс. чел. |
72 |
78 |
83 |
87 |
90 |
Найти линию тренда и, используя полученное уравнение, определить численность населения в 2000 г. (прогноз).
Решение.
Предположив,
что численность населения изменяется
во времени по прямой
,
для нахождения параметров а0
и a1,
решаем
систему нормальных уравнений, отвечающих
требованию способа наименьших квадратов:
Далее
в таблице рассчитаны необходимые для
решения системы уравнений суммы:
.
Годы
последовательно обозначены как 1, 2,
3, 4, 5 (п
=
5).
Подставляя полученные суммы в систему уравнений
получаем a1 = 4,5; a0 = 68,5.
Отсюда
искомое уравнение тренда
= 68,5 + 4,5t.
Подставляя в это уравнение значения t:
1,2, 3, 4, 5, находим
выравненные (теоретические) значения
(см. графу 6 таблицы).
Для 2000 г. t
= 8.
Год |
Численность населения, тыс. чел., уi |
Условное обозначение времени t |
t2 |
yt |
|
1 |
2 |
3 |
4 |
5 |
6 |
2003 2004 2005 2006 2007 |
72 78 83 87 90 |
1 2 3 4 5 |
1 4 9 16 25 |
72 156 249 348 450 |
73 77,5 82 86,5 91 |
Σ |
410 |
15 |
55 |
1275 |
410 |
Следовательно, по прогнозу численность населения города в 2000 г. составит 68,5 + 4,5 * 8 = 104,5 (тыс. чел.).
Для решения данной задачи можно использовать и второй способ, упрощенный.
Как указывалось выше, если время (t) обозначить так, чтобы Σt=0 (т.е. счет вести от середины ряда), то система упростится и примет вид
Каждое уравнение в этом случае решается самостоятельно:
и
Необходимые для расчета aQ и a1 суммы приведены ниже.
Условное обозначение времени, t |
Год |
Численность населения, тыс. чел., у |
t2 |
yt |
|
1 |
2 |
3 |
4 |
5 |
6 |
-2 -1 0 1 2 |
2003 2004 2005 2006 2007 |
72 78 83 87 90 |
4 1 0 1 4 |
-144 -78 0 87 180 |
73,0 77,5 82,0 86,5 91,0 |
Σt=0 |
п = 5 |
Σy = 410 |
Σt2= 10 |
Σyt = 45 |
|
Получаем
5a0=410; a0=82;
10a1=45; a1=4,5;
отсюда уравнение прямой для выровненных уровней
=82+4,5t(линия тренда).
Выровненные значения, рассчитанные по последней формуле путем подстановки в нее значений t = —2, — 1, 0, 1, 2, показаны в графе 6 таблицы.
Численность населения в 2000 г. (t = 5) по формуле будет
= 82 + 4,5*5 = 104,5 (тыс. чел.).
Естественно, эта величина условная, рассчитанная при предположении, что линейная закономерность изменения численности населения, принятая для 2003—2007 гг., сохранится на последующий период до 2000 г.