
- •Подготовка к экзамену по матведу. Оглавление
- •1.Атомно-кристаллическая структура металлов. Анизотропия. Полиморфизм.
- •2.Идеальное и реальное строение кристаллов. Дефекты кристаллического строения. Теоретическая и реальная прочность металлов. Пути повышения прочности металлов.
- •3.Сплавы:твердые растворы, механические смеси, химические соединения. Алгоритм расшифровки диаграмм состояния двойных сплавов. Основные типы диаграмм состояния двойных сплавов и их расшифровка.
- •6.Предварительная термическая обработка углеродистых сталей. Нормализация, отжиг стали. Виды брака. Перегрев, пережег : влияние на механические свойства стали. Способы устранения брака.
- •7.Диаграмма изотермического распада аустенита.(с-образная кривая).Критическая скорость закалки. Структуры, образующиеся в стали при охлаждении со скоростью, меньше критической.
- •8. Виды отпуска углеродистых сталей, их назначение и образующиеся структуры. Сравнение образовавшихся структур.
- •9.Термическая обработка углеродистых конструкционных сталей(изделия типа вал, шестерня).
- •10.Термическая обработка углеродистых инструментальных сталей.
- •11.Термические и структурные напряжения, возникающие в изделии при термической обработке. Способы их предотвращения или устранения. Способы закалки стали.
- •12.Влияние содержания углерода на свойства стали в отожженном и закаленном состояниях.
- •13. Основной эффект легирования сталей и сплавов металлическими элементами.
- •14.Маркировка легированных сталей и сплавов.
- •15.Прокаливаемость сталей и сплавов. Критический диаметр. Влияние легирования на Dкр.
- •16.Классификация легированных сталей по структуре. Классы легированных сталей.
- •17. Конструкционные легированные стали. Термическая обработка низколегированных конструкционных сталей(вал, пружина).
- •18. Дефекты легированных сталей перлитного класса.
- •19. Защита сталей и сплавов от коррозии легированием. Межкристаллическая коррозия и способы борьбы с ней.
- •20. Влияние пластической деформации на механические свойства сталей. Наклеп и рекристаллизация. Критическая степень наклепа.
- •21. Поверхностное упрочнение деталей машин наклепом.
- •22. Поверхностное упрочнение деталей машин закалкой с разогревом поверхности токами высокой частоты. Интервал возможной твердости.
- •25. Азотирование сталей. Предельная получаемая твердость. Особенности поверхностного слоя.
- •26.Подшипниковые сплавы. Стали для подшипников качения. Маркировка. Термообработка. Сплавы для подшипников скольжения. Строение, свойства, применение.
- •27.Твердые сплавы.
- •28. Теплостойкость инструментальных сталей и сплавов.
- •29. Усталость металлов. Особенности усталостного разрушения. Предел усталости( выносливости). Способы повышения усталостной прочности.
- •30. Алюминевые сплавы литейные и деформируемые. Особенности термической обработки деформируемых сплавов.
- •31. Чугуны. Влияние строения чугунов на свойства (серые, ковкие, высокопрочные). Маркировка чугунов. Область применения.
29. Усталость металлов. Особенности усталостного разрушения. Предел усталости( выносливости). Способы повышения усталостной прочности.
К динамическим нагрузкам, несмотря на отсутствие значительных инерционных сил, можно отнести периодические многократно повторяющиеся (циклические) нагрузки, действующие на элементы конструкции. Такого рода нагружения характерны для большинства машинострои- тельных конструкций, таких, как оси, валы, штоки, пружины, шатуны и т. д. Как показывает практика, нагрузки, циклически изменяющиеся во времени по величине или по величине и по знаку, могут привести к разрушению конструкции при напряжениях, существенно меньших, чем предел текучести (или предел прочности). Такое разрушение принято называть «уст а л о с т н ы м ». Материал как бы «устает » под действием многократных периодических нагрузок. Усталостное разрушение – разрушение материала под действием повторно- переменных напряжений. Усталость материала – постепенное накопление повреждений в материале под действием переменных напряжений, приводящих к образованию трещин в материале и разрушению. Выносливость – способность материала сопротивляться усталостному раз- рушению. Физические причины усталостного разрушения материалов достаточно сложны и еще не до конца изучены. Одной из основных причин усталостного разрушения принято считать образование и развитие трещин. Механизм усталостного разрушения во многом связан с неоднородностью реальной структуры материалов (различие размеров, очертаний, ориентации соседних зерен м талла; наличие различных включений – шлаков, приме- сей; дефекты кристаллической решетки, дефекты повер ности материала – царапины, коррозия и т. д.). В связи с указанной неоднородностью при переменных напряжениях на границах отдельных включений и вблизи микроскопических пустот и различных дефектов возникает конце трация напряжений, которая приводит: к микропластическим деформациям сдвига некоторых зерен металла (при этом на поверхности зерен могут появляться полосы скольжения) и накоплению сдвигов (кото- 57 рое на некоторых материалах проявляется в виде микроскопических бугор- ков и впадинок – экструзий и интрузий); затем происходит развитие сдвигов в микротрещины, их рост и слияние; на последнем этапе появляется одна или несколько макротрещин, которая достаточно интенсивно развивается (растет). Края трещины под действием переменной нагрузки притираются друг об друга, и поэтому зона роста трещины отличается гладкой (полированной) поверхностью. По мере роста трещины поперечное сечение детали все больше ослабляется, и наконец происходит внезапное хрупкое разрушение детали, при этом з о н а хрупкого дол о м а имеет грубозернистую кристаллическую структуру (как при хрупком раз- рушении).
Пути повышения предела выносливости:
Поверхностное упрочнение детали и образование при этом на поверхности сжимающих остаточных напряжений способствуют повышению предела выносливости. Этого можно добиться;
а) поверхностной закалкой ТВЧ;
б) химико-термической обработкой (цементацией, азотированием);
в) дробеструйной обработкой (поверхностный наклёп).
30. Алюминевые сплавы литейные и деформируемые. Особенности термической обработки деформируемых сплавов.
Деформируемые сплавы, неупрочняемые термической обработкой
Основные легирующие элементы: магний, марганец.
Обозначение: АМг (сплав Аl – Mg); АМц (сплав Аl – Mn).
Свойства: невысокая прочность, хорошая пластичность и коррозионная стойкость.
Используются в отожженном состоянии, либо упрочняются деформацией, нагартовкой.
Эти сплавы хорошо обрабатываются и свариваются.
Относятся сплавы системы алюминий – медь (магний). Наиболее известные сплавы этой группы – дюралюмины.
Обозначение: Д1; Д16.
Термическая обработка для дюралюминов заключается в закалке и последующем старении.
Закалка проводится с температуры 500°С, в воде. После закалки структура сплавов: пересыщенный твердый раствор меди в алюминии. В закаленном состоянии сплавы имеют невысокую прочность при сохранении пластичности. Закаленные детали можно подвергать технологическим операциям.
После закалки с целью упрочнения проводится старение:естественное(при комнатной температуре) или искусственное (при температуре 150-250°С).
Старение – процесс распада пересыщенного твердого раствора легирующих элементов в металлической матрице с образованием дисперсных частиц интерметаллидных соединений с целью упрочнения сплавов.
Процесс старения включает несколько стадий:
1 стадия – образование зон Гинье-Престона ГП-1(образование прослоек повышенной концентрации меди размером 4 – 10 нм в растворе меди в алюминии);
2 стадия – рост зон Гинье-Престона (100нм) и образование зон ГП-2. При этом повышается прочность сплава;
3 стадия – образование самостоятельной тета - фазы Θ (CuAl2) и дальнейший ее рост при увеличении температуры искусственного старения.
Естественное старение заканчивается образованием зон ГП-1 и ГП-2.
Искусственное старение заканчивается образованием Θ – фазы.
Структура сплавов после закалки и естественного старения – твердый раствор + зоны ГП.
Структура сплавов после закалки и искусственного старения – твердый раствор + Θ-фаза.
После термической обработки дюрали значительно упрочняются, причем эффект максимального упрочнения достигается после закалки и естественного старения. Кроме того, в дюралях увеличивается стойкость к усталостным и хрупким разрушениям.
Дюрали используют в самолетостроении, в пищевой, химической промышленности, для корпусов катеров, яхт.
Для повышения коррозионной стойкости дюрали плакируют. (поверхность листов из дюрали покрывают чистым алюминием и прокатывают).
В последнее время для снижения полетной массы в ракетной технике и самолетостроении используют легирование литием. Создаются сплавы системы Al – Mg – Li и Al – Cu – Li.
Литейные алюминиевые сплавы .
Используют для изготовления готовых литых деталей.
Литейные сплавы алюминия обозначаются: АЛ2; АЛ9; АЛ13; АЛ14 и т.д., где А – алюминиевый сплав, Л – литейный сплав, число – условный номер сплава.
Основные легирующие элементы: кремний (система Al – Si, силумины), магний, цинк, медь.