
- •Подготовка к экзамену по матведу. Оглавление
- •1.Атомно-кристаллическая структура металлов. Анизотропия. Полиморфизм.
- •2.Идеальное и реальное строение кристаллов. Дефекты кристаллического строения. Теоретическая и реальная прочность металлов. Пути повышения прочности металлов.
- •3.Сплавы:твердые растворы, механические смеси, химические соединения. Алгоритм расшифровки диаграмм состояния двойных сплавов. Основные типы диаграмм состояния двойных сплавов и их расшифровка.
- •6.Предварительная термическая обработка углеродистых сталей. Нормализация, отжиг стали. Виды брака. Перегрев, пережег : влияние на механические свойства стали. Способы устранения брака.
- •7.Диаграмма изотермического распада аустенита.(с-образная кривая).Критическая скорость закалки. Структуры, образующиеся в стали при охлаждении со скоростью, меньше критической.
- •8. Виды отпуска углеродистых сталей, их назначение и образующиеся структуры. Сравнение образовавшихся структур.
- •9.Термическая обработка углеродистых конструкционных сталей(изделия типа вал, шестерня).
- •10.Термическая обработка углеродистых инструментальных сталей.
- •11.Термические и структурные напряжения, возникающие в изделии при термической обработке. Способы их предотвращения или устранения. Способы закалки стали.
- •12.Влияние содержания углерода на свойства стали в отожженном и закаленном состояниях.
- •13. Основной эффект легирования сталей и сплавов металлическими элементами.
- •14.Маркировка легированных сталей и сплавов.
- •15.Прокаливаемость сталей и сплавов. Критический диаметр. Влияние легирования на Dкр.
- •16.Классификация легированных сталей по структуре. Классы легированных сталей.
- •17. Конструкционные легированные стали. Термическая обработка низколегированных конструкционных сталей(вал, пружина).
- •18. Дефекты легированных сталей перлитного класса.
- •19. Защита сталей и сплавов от коррозии легированием. Межкристаллическая коррозия и способы борьбы с ней.
- •20. Влияние пластической деформации на механические свойства сталей. Наклеп и рекристаллизация. Критическая степень наклепа.
- •21. Поверхностное упрочнение деталей машин наклепом.
- •22. Поверхностное упрочнение деталей машин закалкой с разогревом поверхности токами высокой частоты. Интервал возможной твердости.
- •25. Азотирование сталей. Предельная получаемая твердость. Особенности поверхностного слоя.
- •26.Подшипниковые сплавы. Стали для подшипников качения. Маркировка. Термообработка. Сплавы для подшипников скольжения. Строение, свойства, применение.
- •27.Твердые сплавы.
- •28. Теплостойкость инструментальных сталей и сплавов.
- •29. Усталость металлов. Особенности усталостного разрушения. Предел усталости( выносливости). Способы повышения усталостной прочности.
- •30. Алюминевые сплавы литейные и деформируемые. Особенности термической обработки деформируемых сплавов.
- •31. Чугуны. Влияние строения чугунов на свойства (серые, ковкие, высокопрочные). Маркировка чугунов. Область применения.
1.Атомно-кристаллическая структура металлов. Анизотропия. Полиморфизм.
Все тела в зависимости от расположения атомов делятся на аморфные и кристаллические. В отличие от аморфных тел, атомы в которых расположены хаотично, металлы в твердом состоянии являются телами кристаллическими. Кристаллическое строение характеризуется закономерным расположением атомов.
Атомы металлов образуют кристаллическую решетку или ячейку. Каждый металл имеет определенный тип кристаллической решетки, чаще всего встречаются три типа решеток: кубическая объемноцентрированная – ОЦК (рис. 16, а), кубическая гранецентрированная – ГЦК (рис. 16, б) и гексагональная – ГПУ (рис. 16, в).
В кубической объемноцентрированной решетке атомы расположены в узлах ячейки и один атом в центре куба. Такие решетки имеют металлы: Feα, Сг, W, Mo, Tiβ, Nb, Та, Li n др.
В кубической гранецентрированной решетке атомы расположены в узлах ячейки и в центре каждой грани. Этот тип решетки имеют металлы: Feγ, Ni, Ag, Au, Pb, Сu, Соβ и др.
Рис. 16. Типы кристаллических решеток:
а – кубическая объемноцентрированная;
б – кубическая гранецентрированная;
в – гексагональная.
В гексагональной решетке атомы расположены в узлах и центре шестигранных оснований призмы и три атома в средней плоскости призмы. Такую решетку имеют металлы: Zn, Cd, Be, Re, Coα, Tiα и др. Индексы α, β, γ обозначают, что у соответствующих металлов различные кристаллические решетки при различных температурах.
Типы кристаллических ячеек определяются при помощи рентгеноструктурного анализа.
Расстояния
между центрами соседних атомов в
кристаллической решетке называется
периодом (а, b, с). Расстояния между атомами
измеряются в ангстремах - ,
1
=
1•10-8 см.
Базис кристаллической решетки - это число атомов, принадлежащих одной элементарной кристаллической ячейке; для ОЦК базис равен 2, для ГЦК – 4, ГПУ – 6.
Плотность упаковки – это отношение объема занимаемого атомами к объему всей ячейки. Плотность упаковки для ОЦК составляет 68%, для ГЦК и ГПУ – 74%. Плотность упаковки характеризуется координационным числом, т. е. числом атомов, находящихся на равном и наименьшем расстоянии от данного атома. Координационное число для ОЦК – 8, для ГЦК и ГПУ – 12.
Полиморфизм металлов.
Полиморфизмом или аллотропией называют способность металла в твердом состоянии при изменении температуры перестраивать свою кристаллическую решетку. Полиморфные превращения сопровождаются выделением или поглощением теплоты, а также изменением свойств металла. Различные аллотропические состояния называют модификациями. Каждой модификации свойственно оставаться устойчивой лишь в пределах определенного для данного металла интервала температур. Аллотропические формы обозначаются греческими буквами α, β, γ и т. д. На кривых охлаждения и нагрева переход из одного состояния в другое характеризуется остановкой (для чистых металлов) или изменением характера кривой (для сплавов). При аллотропических превращениях кроме изменения свойств (теплопроводности, электропроводности, механических, магнитных и др.) наблюдают изменения объема металла и растворимости (например, углерода в железе). Аллотропические превращения свойственны многим металлам (железу, олову, титану и др.).
Анизотропия металлов.
В различных плоскостях кристаллической решетки число атомов и расстояния между ними неодинаковы. В связи с этим свойства отдельных кристаллов (монокристаллов) в различных направлениях оказываются неодинаковыми.Такое явление называется анизотропией. Реальные металлы являются телами поликристаллическими, т. е. состоят из большого числа различно ориентированных в пространстве кристаллов (зерен). Поэтому свойства lavvx металлов в различных направлениях становятся усредненными, одинаковыми. Однако в тех случаях, когда обработка металлов способствует преимущественной кристаллографической ориентировке отдельных зерен (при прокатке, ковке). поликристаллические металлы также становятся анизотропными. Так, например, прочность образцов, вырезанных из листа вдоль направлений прокатки, больше прочности образцов, вырезанных поперек прокатки.