Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
rhel_11_questions.doc
Скачиваний:
10
Добавлен:
18.07.2019
Размер:
311.81 Кб
Скачать
  1. Страничная организация памяти и виртуальная память процессов

В современных реализациях UNIX для большинства аппаратных архитектур используется страничная организация виртуальной памяти. В этом случае всё адресное пространство процесса разбивается на участки одинакового размера (страницы), аналогичным образом разбивается вся физическая память. Каждая станица адресного пространства процесса может отображаться на какую-то страницу физической памяти. Это обеспечивается специальной таблицей преобразования адресов, которую операционная система поддерживает в адекватном состоянии. Таким образом, физическая память разделяется между множеством процессов, причём каждый из процессов имеет доступ только к «своим» страницам, что гарантируется операционной системой и аппаратными возможностями процессора.

  1. Процесс и контекст процесса: pid, ppid, process state, uid, priority. Потоки

Идентификатор процесса (PID)

Уникальный номер, идентифицирующий процесс. По сути, это номер строки в таблице процессов — специальной внутренней структуре ядра операционной системы, хранящей информацию о процессах.

В любой момент времени ни у каких двух процессов номера не могут совпадать, однако после завершения процесса его номер освобождается и может быть в дальнейшем использован для идентификации любого вновь запущенного процесса.

Идентификатор родительского процесса (PPID)

В операционнной системе UNIX процессы выстраиваются в иерархию — новый процесс может быть создан только одним из уже существующих процессов, который выступает для него родительским.

Очевидно, что в такой схеме должен присутствовать один процесс с особым статусом: он должен быть порожден ядром операционной системы и будет являться родительским для всех остальных процессов в системе. В UNIX такой процесс имеет собственное имя — init. Подробнее об этом процессе сказано в разделе

В UNIX роль номинального субъекта безопасности играет пользователь. Каждому пользователю выдается (обычно — одно) входное имя (login). Каждому входному имени соответствует единственное число, идентификатор пользователя (User IDentifier, UID). Это число и есть ярлык субъекта (номинальный субъект), которым система пользуется для определения прав доступа.

Каждый пользователь входит в одну или более групп. Группа — это список пользователей системы, имеющий собственный идентификатор (Group IDentifier, GID). Поскольку группа объединяет несколько пользователей системы, в терминах политики безопасности она соответствует понятию множественный субъект. Значит, GID — это ярлык множественного субъекта, которых у номинального субъекта может быть более одного. Таким образом, одному UID соответствует список GID.

Приоритет процесса

Число, используемое при планировании (см. «Планирование процессов») исполнения процесса в операционной системе. Традиционное решение операционной системы UNIX состоит в использовании динамически изменяющихся приоритетов. При образовании каждого процесса ему приписывается некоторый устанавливаемый системой статический приоритет, который в дальнейшем может быть изменен с помощью системного вызова nice. Реальным критерием планирования выступает динамический приоритет, статический приоритет составляет основу начального значения динамического приоритета процесса. Все процессы с динамическим приоритетом не ниже порогового участвуют в конкуренции за процессор.

Процессы и потоки

В современных версиях операционной системы UNIX помимо процессов существует понятие потока (или нити) исполнения. В рамках процесса может существовать несколько потоков, каждый из которых исполняется независимо, но все они объединены общим виртуальным адресным пространством. Можно сказать, что все процессы исполняются с единственным потоком по умолчанию, но при необходимости могут быть созданы новые потоки.

Потоки отсутствовали в оригинальной архитектуре UNIX и были добавлены под влиянием современных архитектур персональных компьютеров, в которых переключение контекста исполнения между процессами занимает значительно большее время, чем переключение контекста исполнения между потоками. Однако ценой эффективного переключения между потоками является сильное влияние пот

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]