
- •Цель, задачи и содержание дисциплины. Значение в технологической подготовке инженеров.
- •Виды современных конструкционных материалов.
- •Методы получения заготовок и их обработки
- •Технологические свойства конструкционных материалов.
- •Пути повышения качества и эффективности использования конструкционных материалов.
- •Основы металлургии. Производство чугуна в домнах. Продукция доменного производства и области ее применения.
- •Основы производства стали. Особенности процесса. Влияние процесса плавки на качество и свойства стали.
- •Производство стали в конверторах.
- •Производство стали в мартеновских печах.
- •Производство стали в электропечах.
- •Раскисление стали.
- •Способы разливки стали.
- •Строение и дефекты слитка кипящей стали.
- •Строение и дефекты слитка спокойной стали.
- •Ликвация. Химические неоднородности в стали.
- •Производство меди.
- •Производство титана.
- •Основы технологии литейного производства. Общая характеристика. Литейные сплавы и их свойства.
- •Ручная и машинная формовка. Формовочные и стержневые смеси.
- •Заливка литейных форм. Выбивка отливок. Очистка и обрубка отливок.
- •Специальные способы литья.
- •Литье по выплавляемым моделям.
- •Литье в оболочковые формы.
- •Центробежное литье. Получение труб литьем.
- •Литье в металлические формы.
- •Электрошлаковое литье.
- •Обработка металлов давлением. Упругая и пластическая деформация. Горячая и холодная обработка металлов давлением.
- •Прокатка. Сущность процесса. Продукция прокатного производства.
- •Прессование. Технологические процессы прессования.
- •Волочение. Понятие о технологическом процессе волочения.
- •Ковка. Сущность процесса и основные операции ковки.
- •Листовая штамповка.
- •Объемная штамповка.
- •Сущность процесса сварки, условия образования межатомных и межмолекулярных связей при сварке.
- •Классификация способов сварки. Строение и структурно-фазовые превращения при сварке.
- •Классификация способов сварки по состоянию металла в зоне соединения
- •Сварочная дуга, строение и условия устойчивости горения.
- •Сварочные материалы. Сварочная проволока. Электроды для ручной дуговой сварки, виды покрытий, типы и марки.
- •Источники питания сварочной дуги. Классификация и требования к источникам питания.
- •Технологические возможности способов электрической сварки плавлением. Ручная дуговая сварка. Области применения.
- •Полуавтоматическая дуговая сварка. Область применения.
- •Автоматическая дуговая сварка под флюсом. Область применения.
- •Анодно-механическая обработка заготовок.
- •Электрохимическая обработка заготовок.
- •Ультразвуковая обработка заготовок.
- •Способы нанесения покрытий.
- •Основные виды покрытий. Износостойкие и антикоррозионные покрытия.
- •Современные неметаллические конструкционные материалы. Разновидности и области применения.
- •Пластмассы. Классификация и область применения.
- •Способы изготовления изделий из термопластов. Экструзия, литье и штамповка.
- •Способы изготовления изделий из реактопластов. Формообразование, горячее прессование, методы литья, обработка в твердом состоянии, сварка и склеивание.
- •Порошковая металлургия. Сущность процесса получения деталей. Область применения.
Производство титана.
Промышленные способы получения титана и его основных соединений базируются на использовании в качестве исходного сырья титановых концентратов, содержащих не менее 92-94 % TiO2 в рутиловых концентратах, 52-65 % TiO2 в ильменитовых концентратах из россыпей и 42-47 % TiO2 в ильменитовых концентратах из коренных месторождений. В России ильменитовые концентраты используются главным образом в качестве сырья для выпуска диоксида титана и металла, а также выплавки ферросплавов и карбидов, а рутиловые – для производства обмазки сварочных электродов. Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак, получаемые при переработке ильменитовых концентратов. Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (чугун), а невосстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.
Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана TiCl4: TiO2+ 2C + 2Cl2 =TiCl4 + 2CO
Образующиеся пары TiCl4 при 850 °C восстанавливают магнием: TiCl4+ 2Mg = 2MgCl2+ Ti
Полученную титановую «губку» переплавляют и очищают. Рафинируют титан иодидным способом или электролизом, выделяя Ti из TiCl4. Для получения титановых слитков применяют дуговую, электроннолучевую или плазменную переработку.
Основы технологии литейного производства. Общая характеристика. Литейные сплавы и их свойства.
Все металлы и сплавы характеризуются физическими, химическими, механическими и технологическими свойствами. Технологические свойства характеризуются жидкотекучестью, прокаливаемостью, ковкостью, свариваемостью и обрабатываемостью резанием. Эти свойства металлов и сплавов играют важную роль в машиностроении.К технологическим свойствам металлов относятся также литейные свойства металлов и сплавов, характеризующие способность их хорошо заполнять все очертания формы и образовывать плотные отливки при затвердевании. При недостаточной жидкотекучести в отливке, особенно в тонких ее частях, образуются спаи и недоливы. При склонности металлов и сплавов к большой усадке во время затвердевания (кристаллизации) появляются усадочные раковины и большие внутренние напряжения.Все перечисленные свойства в необходимых случаях определяются испытанием металлов и сплавов в лабораториях с помощью специальных приборов и установок. Литейные свойства чугуна и стали и некоторых цветных металлов и сплавов определяют испытанием на жидкотекучесть. Жидкотекучесть зависит от природы чистых металлов, химического состава сплавов и температуры их нагрева. Величина жидкотекучести определяется по технологической пробе (рис. 108), т. е. по длине спирального канала трапециевидного сечения, заполненного сплавом в контрольной форме. Чем больше жидкотекучесть сплава, тем большей длины участок будет заполнен до затвердевания.
Литьё металлов в кокиль — более качественный способ. Изготавливается кокиль — разборная форма (чаще всего металлическая), в которую производится литьё. После застывания и охлаждения, кокиль раскрывается и из него извлекается изделие. Затем кокиль можно повторно использовать для отливки такой же детали. кокильное литьё, способ получения фасонных отливок в металлических формах — кокилях. В отличие от других способов литья в металлические формы (литьё под давлением, центробежное литьё и др.), при Л. в к. заполнение формы жидким сплавом и его затвердевание происходят без какого-либо внешнего воздействия на жидкий металл, а лишь под действием силы тяжести. В кокилях получают отливки из чугуна, стали, алюминиевых, магниевых и др. сплавов. Особенно эффективно применение кокильного литья при изготовлении отливок из алюминиевых и магниевых сплавов. Данный метод широко применяется при серийном и крупносерийном производстве.
Центробежный метод литья (центробежное литье) используется при получении отливок, имеющих форму тел вращения. Подобные отливки отливаются из чугуна, стали, бронзы и алюминия. При этом расплав заливают в металлическую форму, вращающуюся со скоростью 3000 об/мин.Под действием центробежной силы расплав распределяется по внутренней поверхности формы и, кристаллизуясь, образует отливку. Центробежным способом модно получить двухслойные заготовки, что достигается поочередной заливкой в форму различных сплавов. Кристаллизация расплава в металлической форме под действием центробежной силы обеспечивает получение плотных отливок.При этом, как правило, в отливках не бывает газовых раковин и шлаковых включений. Особыми преимуществами центробежного литья является получение внутренних полостей без применения стержней и большая экономия сплава в виду отсутствия литниковой системы. Выход годных отливок повышается до 95 %.