Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник по химии.doc
Скачиваний:
32
Добавлен:
15.07.2019
Размер:
3.02 Mб
Скачать

9.6. Реакции с участием координационных соединений

Реакции с участием координационных соединений делятся на четыре основных типа: 1) присоединение, замещение или отщепление лиганда; 2) изомеризации координационного полиэдра; 3) реакции связанного лиганда; и 4) реакции электронного переноса.

1а. Присоединение лиганда сопровождается изменением степени окисления реагирующих центрального атома и лигандов

или с их сохранением

1б. Замещение лиганда с разрывом связи металл–донорный атом кинетически совпадает с повышением их констант образования.

1в. Отщепление лиганда с разрывом связи сопровождается внутримолекулярным окислительно-восстановительным взаимодействием

2. Изомеризация – весьма распространенное явление среди геометрических и оптических изомеров:

цис- транс-

Некоторые оптические изомеры типа

Рисунок 9.12.

склонны к рацемизации, т. е. к образованию эквимольной смеси право- (d) и лево- (l) вращающих комплексов по следующей схеме:

Рисунок 9.13.

3. Реакции связанного лиганда многообразны и в некоторых случаях служат основой получения новых органических и неорганических соединений.

Рисунок 9.14.

При перекристаллизации из R–OH бис-(диэтилдитиокарбоната)Ni (II) легко протекает реакция переэтерификации (Et2NCS2)2Ni + 4R–OH → (R2NCS2)2Ni + 4EtOH. В результате взаимодействия бис(ацетилацетоната)Ni (II) с этилендиамином получается N'N'-этилен-бис(ацетилацетониминат)Ni (II), который при извлечении иона Ni (II) даст органическое соединение N'N'-этилен-бисацетилацетонимин.

Рисунок 9.15.

4. Реакции электронного переноса сопровождаются изменением степени окисления центрального иона и вызваны образованием более устойчивых электронных конфигураций за счет увеличения энергии стабилизации кристаллическим полем (ЭСКП).

9.7. Координационные соединения p- и s-элементов

Координационные соединения p-элементов отличаются одной особенностью по сравнению с комплексами d-металлов: комплексообразователь не содержит неспаренных электронов, поэтому к ним не применима теория кристаллического поля. Они менее многочисленны, чем комплексы d-элементов, но их представители играют весьма существенную роль в промышленных реакциях и процессах жизнедеятельности.

Как уже указывалось в начале главы, наиболее известным примером комплексного катиона служит ион аммония в котором реализуется -гибридизация. Комплексный анион с той же -гибридизацией образует солеобразные соединения .

Октаэдрические комплексы с σ-связями образуют p-элементы, начиная с третьего периода: [AlF]3–, [SiF6]2–, [PF6]; K3[AlF6] используется при электрохимическом получении алюминия, а соединения, в которые входит комплексный анион [SnCl6]2–, используются в некоторых каталитических процессах.

Из координационных соединений s-элементов следует упомянуть хлорофилл – Mg-порфириновые соединения (основной компонент фотосинтеза) и валиномицины – полиэфиры производные одноосновных карбоновых кислот (ионофоры) – способные к селективному связыванию K+.

181