
- •Глава 1. Введение в химию 4
- •Глава 2. Электронное строение атомов 18
- •Глава 3. Химическая связь 33
- •Глава 4. Химическая термодинамика 53
- •Глава 5. Химическая кинетика 69
- •Глава 6. Растворы 83
- •Глава 7. Химические источники тока 113
- •Глава 8. Химические свойства элементов 132
- •Глава 9. Координационные соединения 162
- •Глава 1. Введение в химию
- •1.1. Понятие об атомах
- •1.2. Молекулы, радикалы и ионы
- •1.3. Номенклатура неорганических соединений
- •1.4. Законы стехиометрии
- •1.5. Химические реакции
- •Способы получения солей
- •Способы получения оксидов
- •Способы получения кислот
- •Способы получения оснований
- •Глава 2. Электронное строение атомов
- •2.1. Корпускулярно-волновые свойства частиц
- •2.2. Квантовые числа электрона
- •2.3. Заполнения атомных орбиталей
- •2.4. Электронные формулы элементов
- •2.5. Периодическая система элементов
- •2.5.1. Электронные конфигурации атомов периодической таблицы
- •2.6. Периодичность атомных характеристик
- •2.6.1. Ионные радиусы элементов
- •Глава 3. Химическая связь
- •3.1. Химическая связь
- •3.2. Типы химических связей
- •3.3. Современные представления о химической связи
- •3.3.1. Метод молекулярных орбиталей (ммо)
- •3.3.2. Двухатомные гомоядерные молекулы
- •3.3.3. Свойства двухатомных молекул p-элементов II периода
- •3.3.4. Многоатомные молекулы
- •3.3.5. Метод валентных связей (мвс)
- •3.3.6. Сравнительная характеристика ммо и мвс
- •3.3.7. Метод Гиллеспи–Найхолма
- •Глава 4. Химическая термодинамика
- •4.1. Введение в термодинамику
- •4.2. Энтальпия
- •4.3. Введение в термохимию
- •4.4. Закон Гесса
- •4.5. Энтропия
- •4.6. Энергия Гиббса
- •4.7. Химическое равновесие
- •4.8. Принцип Ле Шателье
- •4.8.1. Константы диссоциации кислот и оснований
- •4.8.2. Константы комплексообразования
- •Глава 5. Химическая кинетика
- •5.1. Скорость химических реакций
- •5.2. Закон действующих масс
- •5.3. Порядок химических реакций
- •5.4. Температура и скорость реакции
- •5.5. Катализ
- •5.6. Сложные реакции
- •5.6.1. Обратимые реакции
- •5.6.2. Последовательные реакции
- •5.6.3. Параллельные реакции
- •5.6.4. Цепные реакции
- •5.6.5. Фотохимические реакции
- •Глава 6. Растворы
- •6.1. Классификация растворов
- •6.2. Концентрация растворов
- •6.3. Растворы неэлектролитов
- •6.3.1. Закон Генри
- •6.3.3. Осмос
- •6.4. Растворы слабых электролитов
- •6.4.1. Водородный показатель pH
- •6.5. Растворы сильных электролитов
- •6.6. Кислотно-основные свойства химических соединений
- •6.7. Гидролиз солей
- •6.8. Произведение растворимости
- •6.9. Равновесие в гетерогенных системах
- •6.9.1. Диаграммы плавкости
- •Глава 7. Химические источники тока
- •7.1. Типы окислительно-восстановительных реакций
- •7.2. Электродные потенциалы и электродвижущие силы. Стандартный водородный электрод
- •7.2.1. Стандартные окислительно-восстановительные потенциалы
- •7.3. Классификация электродов
- •7.3.1. Электроды первого рода
- •.3.2. Электроды второго рода
- •7.3.3. Ионоселективные электроды
- •7.4. Химические источники тока
- •7.4.1. Типы гальванических элементов
- •7.5. Электрохимическая коррозия
- •Глава 8. Химические свойства элементов
- •8.1.1. Водород и его соединения. Гелий
- •8.1.2. Водородные соединения
- •8.1.3. Оксиды, пероксиды и гидроксиды
- •8.2.1. Важнейшие характеристики p-элементов
- •8.2.2. Гидроксиды
- •8.2.3. Отличия соединений p-элементов второго и третьего периода
- •8.2.4. Водородные соединения
- •8.2.5. Оксиды, бориды, карбиды, силициды и нитриды
- •8.2.6. Интерметаллические соединения
- •8.2.7. Благородные газы
- •8.3.1. Соединения d-элементов с легкими неметаллами
- •8.4.1. Лантаноиды
- •8.4.2. Актиноиды
- •Глава 9. Координационные соединения
- •9.1. Общие сведения о координационных соединениях
- •9.2. Изомерия координационных соединений
- •9.3. Устойчивость координационных соединений в растворах
- •9.4. Химическая связь в координационных соединениях
- •9.4.1. Метод валентных связей
- •9.4.2. Теория кристаллического поля
- •9.4.3. Теория поля лигандов
- •9.5. Электронная конфигурация комплексообразователя
- •9.6. Реакции с участием координационных соединений
- •9.7. Координационные соединения p- и s-элементов
1.3. Номенклатура неорганических соединений
Систематическое название неорганического соединения читается справа налево по изображенной формуле, записанной по определенным правилам, согласно которым на первое место всегда ставится электроположительная, а на второе – электроотрицательная составляющая.
В бинарных соединениях неметаллов на первое место ставится тот элемент, символ которого стоит раньше в следующем ряду:
Rn, Xe, Kr, B, Si, C, Sb, As, P, N, H, Te, Se, S, At, I, Br, Cl, O, F;
например, XeF4, NH3, H2O, Cl2O, OF2, IF7, SO2, NO, B2O3.
В соединениях металлов друг с другом (интерметаллидах) символы элементов указываются в алфавитном порядке: FeNi3, MgZn, Al4Cu9.
Количество одинаковых атомов или атомных групп в формуле указывается арабскими цифрами в виде правого нижнего индекса в круглых, квадратных или фигурных *) скобках; нормальный порядок для скобок – {[( )]}:
Cr2(SO4)3, Ca3(PO4)2, La2(C2O4)3, [Cr(H2O)6]Cl3.
В кристаллогидратах число молекул воды указывается арабскими цифрами:
La2(C2O4)3∙10H2O, Na2SO4∙10 H2O, CuSO4∙5H2O.
*) Фигурные скобки обычно используются в формулах координационных соединений, поскольку комплексный ион или нейтральное координационное соединение непременно заключается в квадратные скобки; рекомендуемый порядок скобок [( )], [{( )}], [{[( )]}], например,
[Co(NH3)6]Cl3, [Zn{NH2–CH2CH(NH2)CH2NH2}2]SO4.
Одноатомные катионы называют по русскому названию элемента в родительном падеже и указанием степени окисления в скобках в виде арабской (+n) или римской цифры: Au+ – катион золота (+I), Au3+ – катион золота (+III), P5+ – катион фосфора (+V).
Указание степени окисления опускают, если возможен только один катион: K+ – катион калия, Ba2+ – катион бария.
Сложные
катионы, образованные присоединением
протона к нейтральной молекуле, называются
с прибавлением окончания «-оний» или
«-ий»:
–
катион оксония (оксоний),
–
катион аммония (аммоний),
–
катион пиридиния (пиридиний).
Сложные
катионы многозарядных ионов металлов,
содержащие кислород, называются с
прибавлением окончания «-ил» к корню
русского названия элемента:
–
уранил,
–
молибденил,
–
ванадил.
Анионы,
состоящие из одного атома или нескольких
одинаковых атомов, называют по элементу
с окончанием «-ид»:
–
гидрид,
–
хлорид,
–
оксид,
–
арсенид,
–
антимонид,
–
силицид,
–
пероксид,
–
азид.
Некоторые
многоатомные анионы имеют собственное
название:
–
гидроксид,
–
азид,
–
цианид,
–
ацетиленид.
Сложные
гетероатомные анионы элементов в высшей
степени окисления оканчивается на «-ат»
(
– сульфат,
–
нитрат,
–
фосфат); окончание «-ит» указывает на
более низкую степень окисления (
– сульфит,
–
нитрит,
–
арсенит).
Название соли начинается с аниона в именительном падеже с соответсвующим окончанием (-ид, -ат, -ит) и катиона в родительном падеже (NaCl – хлорид натрия, MgSO4 – сульфат магния, AgNO3 – нитрат серебра).
Неорганические соединения с полиатомными анионами называют по правилам координационных соединений. При этом характеристический (центральный) атом координирует оксо- или другие ионы, а анион всегда оканчивается на -ат независимо от степени окисления характеристического атома: MgSO4 – тетраоксосульфат магния, AgNO3 – триоксонитрат серебра, Na2S2O3 – тиосульфат натрия, Na3PO4 – тетраоксофосфат тринатрия.