Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
19 по 35.docx
Скачиваний:
1
Добавлен:
15.07.2019
Размер:
124.31 Кб
Скачать

28 Вопрос

Хромосомы— нуклеопротеидные структуры в ядре эукариотической клетки (клетки, содержащей ядро), которые становятся легко заметными в определённых фазах клеточного цикла (во время митоза или мейоза). Хромосомы представляют собой высокую степень конденсации хроматина, постоянно присутствующего в клеточном ядре. Исходно термин был предложен для обозначения структур, выявляемых в эукариотических клетках, но в последние десятилетия всё чаще говорят о бактериальных хромосомах. В хромосомах сосредоточена большая часть наследственной информации.

Первичная перетяжка

Хромосомная перетяжка (X. п.), в которой локализуется центромера и которая делит хромосому на плечи.

Вторичные перетяжки

Морфологический признак, позволяющий идентифицировать отдельные хромосомы в наборе. От первичной перетяжки отличаются отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают короткими и длинными и локализуются в разных точках по длине хромосомы. У человека это 13, 14, 15, 21 и 22 хромосомы.

Типы строения хромосом

Различают четыре типа строения хромосом:

1.телоцентрические (палочковидные хромосомы с центромерой, расположенной на проксимальном конце);

2.акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом);

3.субметацентрические (с плечами неравной длины, напоминающие по форме букву L);

4.метацентрические (V-образные хромосомы, обладающие плечами равной длины).

Понятие о кариотипе и фенотипе.

Кариотип — совокупность признаков (число, размеры, форма и т. д.) полного набора хромосом, присущая клеткам данного биологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии (клона) клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора (кариограммы).

Фенотип — совокупность характеристик, присущих индивиду на определённой стадии развития. Фенотип формируется на основе генотипа, опосредованного рядом внешнесредовых факторов. У диплоидных организмов в фенотипе проявляются доминантные гены.

Фенотип — совокупность внешних и внутренних признаков организма, приобретённых в результате онтогенеза (индивидуального развития).

Фенотип можно определить как «вынос» генетической информации навстречу факторам среды. В первом приближении можно говорить о двух характеристиках фенотипа: а) число направлений выноса характеризует число факторов среды, к которым чувствителен фенотип, — мерность фенотипа; б) «дальность» выноса характеризует степень чувствительности фенотипа к данному фактору среды.

Функция хромосом

Функция хромосом заключается:

1) в хранении наследственной информации. Хромосомы являются носителями генетической информации;

2) передаче наследственной информации. Наследственная информация передается путем репликации молекулы ДНК;

3) реализации наследственной информации. Благодаря воспроизводству того или иного типа и-РНК и, соответственно, того или иного типа бел- ка осуществляется контроль над всеми процессами жизнедеятельности клетки и всего организма.

Таким образом, хромосомы с заключенными в них генами обусловливают непрерывный ряд воспроизведения.

29

Клеточный цикл — это период жизни клетки от одного деления до другого или от деления до смерти.

Клеточный цикл состоит из интерфазы (период вне деления) и самого клеточного деления.

Если клетка собирается когда-нибудь делиться, то интерфаза будет состоять из 3-х периодов. Сразу после выхода из митоза клетка вступает в пресинтетический или G1-период, далее переходит в синтетический или S-период и потом — в постсинтетический или G2-период. G2-периодом заканчивается интерфаза и после нее клетка вступает в следующий митоз.

Если клетка не планирует снова делиться, то она как бы выходит из клеточного цикла и вступает в период покоя, или G0-период. Если клетка, находящаяся в G0-периоде, снова захочет делиться, то она выходит из G0-периода и вступает в G1-период. Таким образом, если клетка находится в G1-периоде, то она обязательно рано или поздно будет делиться, не говоря уже о S- и G2-периодах, когда клетка в ближайшее время обязательно вступит в митоз.

G1-период может продолжаться от 2–4 ч до нескольких недель или даже месяцев. Продолжительность S-периода варьирует от 6 до 8 ч, а G2-периода — от нескольких часов до получаса. Длительность митоза — от 40 до 90 минут. Причем самой короткой фазой митоза можно считать анафазу. Она занимает всего несколько минут.

G1-период характеризуется высокой синтетической активностью, в течение которого клетка должна увеличить свой объем до размера материнской клетки, а значит, и количество органелл, различных веществ. Непонятно почему, но клетка прежде чем вступить в следующий митоз должна иметь размер равный материнской клетке. И пока этого не произойдет, клетка продолжает оставаться в G1-периоде. Видимо, единственным исключением из этого является дробление, при котором бластомеры делятся, не достигая размеров исходных клеток.

В конце G1-периода принято различать специальный момент, называемый R-точкой (точка рестрикции, R-пункт), после которого клетка обязательно в течение нескольких часов (обычно 1–2) вступает в S-период. Период времени между R-точкой и началом S-периода можно рассматривать в качестве подготовительного для перехода в S-период.

Самый главный процесс, который идет в S-периоде — это удвоение или редупликация ДНК. Все остальные реакции, происходящие в это время, направлены на обеспечение синтеза ДНК — синтез гистоновых белков, синтез ферментов, регулирующих и обеспечивающих синтез нуклеотидов и образование новых нитей ДНК.

Сущность G2-периода не совсем понятна в настоящее время, однако в этот период происходит образование веществ, необходимых для самого процесса митоза (белки микротрубочек веретена деления, АТФ).

Прохождение клетки по всем периодам клеточного цикла строго контролируется специальными регуляторными молеулами, которые обеспечивают: 1) прохождение клетки по определенному периоду клеточного цикла и 2) переход из одного периода в другой. Причем прохождение по каждому периоду, а также переход из одного периода в другой контролируется различными веществами

30 .Физиологическая регенерация представляет собой процесс обновления функционирующих структур организма. Благодаря физиологической регенерации поддерживается структурный гомеостаз и обеспечивается возможность постоянного выполнения органами их функций. С общебиологической точки зрения, физиологическая регенерация, как и обмен веществ, является проявлением такого важнейшего свойства жизни, как самообновление. При этом восстановление структуры может происходить на разных уровнях - молекулярном, субклеточном, клеточном, тканевом и органном.

Примером физиологической регенерации на внутриклеточном уровне являются процессы восстановления субклеточных структур в клетках всех тканей и органов. Значение ее особенно велико для долговечных тканей, утративших способность к регенерации путем деления клеток (например, нервная ткань).

Примерами физиологической регенерации на клеточном и тканевом уровнях являются обновления эпидермиса кожи, роговицы глаза, эпителия слизистой кишечника, клеток периферической крови и др. 

Репаративная регенерация

Репаративная, или восстановительная регенерация - это восстановление клеток и тканей взамен погибших из-за различных патологических процессов. Она чрезвычайно разнообразна по факторам, вызывающим повреждения, по объемам повреждения, а также по способам восстановления. Повреждающими факторами, например, могут быть механическая травма, оперативное вмешательство, действие ядовитых веществ, ожоги, обморожения, лучевые воздействия, голодание и другие болезнетворные агенты. Наиболее широко изучена репаративная регенерация после механической травмы. Способность некоторых животных (гидра, планария, некоторые кольчатые черви, морские звезды, асцидия и др.) восстанавливать утраченные органы и части организма издавна изумляла ученых. Ещё Ч.Дарвин удивлялся способности улитки воспроизводить голову и способности саламандры восстанавливать отрезанные глаза, хвост и конечности.

Известны примеры восстановления больших участков организма (рис. 126), состоящих из комплекса органов (регенерация ротового конца у гидры, головного конца у кольчатого червя, восстановление морской звезды из одного луча).

Репаративная регенерация может быть полной и неполной. Полная регенерация, или реституция, характеризуется возмещением дефекта тканью, которая идентична погибшей. Она развивается преимущественно в тканях, где преобладает клеточная регенерация. При неполной регенерации, или субституции, дефект замещается соединительной тканью, рубцом. Субституция характерна для органов и тканей, в которых преобладает внутриклеточная форма регенерации, либо она сочетается с клеточной регенерацией. Функция органа возмещается в таких случаях путем гипертрофии или гиперплазии окружающих дефект клеток.

31

Понятие о клеточной и внутриклеточной регенерации, отличительные особенности,значение.

Регенерация внутриклеточная — это Р. по­вреж­ден­ных орга­но­и­дов и мем­бран­ных струк­тур клет­ки; ха­рак­тер­на для кле­ток мио­кар­да, нерв­ной си­с­темы.

Регенерация клеточная — это Р. орга­нов или тка­ней пу­тем разм­ноже­ния не­по­вреж­ден­ных кле­ток; ха­рак­тер­на для по­кров­но­го эпи­те­лия, со­е­ди­ни­тель­ной тка­ни.

Внутриклеточная форма регенерации является универсальной, так как она свойственна всем органам и тканям без исключения. Однако структурно-функциональная специализация органов и тканей в фило- и онтогенезе «отобрала» для одних преимущественно клеточную форму, для других — преимущественно или исключительно внутриклеточную, для третьих — в равной мере обе формы регенерации.  К органам и тканям, в которых преобладает клеточная форма регенерации, относятся кости, эпителий кожи, слизистые оболочки, кроветворная и рыхлая соединительная ткань и т. д. Клеточная и внутриклеточная формы регенерации наблюдаются в железистых органах (печень, почка, поджелудочная железа, эндокринная система), легких, гладких мышцах, вегетативной нервной системе.  К органам и тканям, где преобладает внутриклеточная форма регенерации, относятся миокард и скелетные мышцы, в центральной нервной системе эта форма регенерации становится единственной формой восстановления структуры. Преобладание той или иной формы регенерации в определенных органах и тканях определяется их функциональным назначением, структурно-функциональной специализацией. 

35

Апоптоз представляет собой вариант клеточной смерти, которая имеет место в нормальных физиологических условиях, и сама клетка является активным участником своей собственной смерти.

Апоптоз наиболее часто наблюдается в течение обычного клеточного обновления, при поддержании тканевого гомеостаза, в эмбриогенезе, при индукции и поддержании иммунологической толерантности, тканевой атрофии.

При апоптозе происходит смерть отдельных клеток, а не какой-то группы. До наступления морфологических изменеий в клетках, вступающих в апоптоз, происходит необратимая фрагментация геномной ДНК. В большинстве клеток такую фрагментацию ДНК вызывают ядерные эндонуклеазы, которые селективно разрезают ДНК на сайты, локализованные между нуклеосомами (линкерные участки ДНК), и приводят к образованию моно- и олиго-нуклеосомных фрагментов ДНК.

Клетки, входящие в апоптоз, сначала теряют свою форму и становится округлыми, а потом наступает сморщивание цитомембраны, но без нарушения проницаемости. Далее происходит агрегация хроматина около ядерной оболочки, образование клеточных перетяжек и расщепление цитоплазмы и ядра на несколько окруженных мембраной частей (апоптотические тельца). Каждая их них содержит морфологически интактные органеллы и ядерный материал. Апоптотические тельца быстро распознаются и фагоцитируются макрофагами или другими рядом лежащими клетками. Удаление апоптотических телец протекает без возникновения воспалительной реакции. In vitro апоптотические тельца и оставшиеся клеточные фрагменты набухают и затем лизируются.