
- •Бийский технологический институт (филиал)
- •Краткий курс биотехнологии
- •1 Природа и многообразие биотехнологических процессов
- •1.1 Введение
- •История развития биотехнологических процессов
- •1.3 Микроорганизмы, используемые в биотехнологических процессах
- •2 Производство белков одноклеточных организмов
- •2.1 Целесообразность использования микроорганизмов для
- •Производства белка
- •2.2 Использование дрожжей
- •2.3 Использование бактерий
- •2.4 Использование водорослей
- •2.5 Использование микроскопических грибов
- •3 Методы генетического конструирования
- •In vivo
- •3.1 Регуляция метаболизма в микробной клетке
- •3.2 Мутагенез и методы выделения мутантов
- •3.3 Плазмиды и конъюгация у бактерий
- •3.4 Фаги и трансдукция
- •3.5 Гибридизация эукариотических организмов
- •3.6 Слияние протопластов или фузия клеток
- •4 Технология производства метаболитов
- •4.1 Классификация продуктов биотехнологических производств
- •4.2 Общая схема биотехнологического производства продуктов микробного синтеза
- •4.3 Биотехнология получения первичных метаболитов
- •4.3.1 Производство аминокислот
- •4.3.2 Производство витаминов
- •4.3.3 Производство органических кислот
- •4.4 Биотехнология получения вторичных метаболитов
- •4.4.1 Получение антибиотиков
- •4.4.2 Получение промышленно важных стероидов
- •5 Биоиндустрия ферментов
- •5.1 Область применения и источники ферментов
- •5.2 Выбор штамма и условий культивирования
- •5.3 Технология культивирования микроорганизмов – продуцентов ферментов и выделение ферментов
- •5.4 Инженерная энзимология и ее задачи
- •6 Методы генетического конструирования
- •In vitro
- •6.1 Биотехнология рекомбинантных днк
- •6.2 Конструирование рекомбинантных днк
- •6.3 Идентификация клеток-реципиентов, содержащих рекомбинантные гены
- •6.4 Экспрессия чужеродных генов
- •6.4.1 Клонирование в бактериях
- •6.4.2 Клонирование в дрожжах
- •6.4.3 Клонирование в клетках животных
- •6.5 Использование генетической инженерии в животноводстве
- •6.6 Генная инженерия растений
- •7 Основы клеточной инженерии растений
- •7.1 История предмета
- •7.2 Методы и условия культивирования изолированных тканей и клеток растений
- •7.3 Дедифференцировка на основе каллусогенеза
- •7.4 Типы культур клеток и тканей
- •7.5 Общая характеристика каллусных клеток
- •7.6 Морфогенез в каллусных тканях как проявление тотипотентности растительной клетки
- •7.6.1 Дифференцировка каллусных тканей
- •7.6.2 Гистогенез (образование тканей)
- •7.6.3 Органогенез
- •7.6.4 Соматический эмбриогенез
- •7.7 Изолированные протопласты, их получение, культивирование, применение
- •7.8 Клональное микроразмножение и оздоровление растений
- •8 Экологическая биотехнология
- •8.1 Получение биогаза
- •8.2 Производство биоэтанола
- •8.3 Очистка сточных вод
- •8.3.1 Методы очистки сточных вод
- •8.3.1.1 Механические методы
- •8.3.1.2 Химические методы
- •8.3.1.3 Физико-химические методы
- •8.3.1.4 Биологический метод
- •8.3.2 Отстой сточных вод и его использование
- •9 Контрольные вопросы
- •Список литературы
- •Содержание
- •Краткий курс биотехнологии
2.2 Использование дрожжей
В конце 19 века в Германии была разработана технология производства хлебопекарных дрожжей, во время первой мировой войны дрожжи стали использоваться в качестве пищевой добавки в производстве супов и колбас, а также начала развиваться технология производства кормовых дрожжей.
До сих пор культивирование пивных дрожжей Saccharomyces serevisiae (carlsbergensis) остается важным резервом пищевого белка и витаминов. Организм человека усваивает свыше 90 % всех питательных веществ, содержащихся в них. В составе этих дрожжей обнаружено 14 витаминов, особенно они богаты витаминами группы В.
При переработке биомассы в пищевой белок ее тщательно очищают. Сначала разрушают стенки дрожжевых клеток путем механической, щелочной, кислотной или ферментативной обработки с последующей экстракцией гомогенной дрожжевой массы подходящим органическим растворителем. Затем щелочным раствором растворяют белки, и белковый раствор отделяют от клеточной массы диализом. Очищенные от низкомолекулярных примесей белки осаждают и используют в качестве белковых добавок в различные пищевые продукты – сосиски, колбасы, паштеты, мясные начинки. Также сухой белок можно текстурировать.
Некоторые дрожжевые клетки (родов Candida, Rhodotorula, Torulopsis, Trichosporon) в качестве источника углерода для роста способны использовать неразветвленные углеводороды с числом от 10 до 30 углеродных атомов в молекуле. В основном они представлены жидкими фракциями углеводородов нефти с температурой кипения от 200 до 320 ºС. Первоначально проект возник из необходимости утилизировать парафины, остающиеся в количестве от 10 до 15 % после очистки газойля. В питательную среду добавляют макро- и микроэлементы, витамины и аминокислоты. В России завод по производству кормовых дрожжей на парафинах нефти был построен в 1971 г. (его продуктивность составила около 1 млн. т в год). Высушенная белковая масса гранулируется и используется как белково-витаминный концентрат в кормопроизводстве.
Хорошим субстратом для выращивания кормовых дрожжей родов Torula, Kluyveromyces является молочная сыворотка. В 1 т молочной сыворотки содержится около 10 кг белка и 50 кг лактозы. Методом ультрафильтрации белки отделяют, а раствор лактозы используют для культивирования дрожжей.
В качестве источников углерода дрожжевые клетки могут использовать и низшие спирты – метанол и этанол, получаемые из природного газа или растительных отходов. При этом дрожжевая масса содержит больше белков (56…62 % от сухой массы) и меньше вредных примесей (производных бензола, D-аминокислот, аномальных липидов, токсинов, канцерогенов), чем кормовые дрожжи, выращенные на парафинах нефти.
Для выращивания дрожжей на гидролизатах растительного сырья используются Candida arborea и Candida utilis, они применяются для пищевых целей и используются в качестве белковых добавок к различным продуктам. Например, в США на основе Candida utilis производят торутеин, который добавляют в продукты питания, после чего они считаются диетическими с высоким содержанием протеина.