- •Бийский технологический институт (филиал)
- •Краткий курс биотехнологии
- •1 Природа и многообразие биотехнологических процессов
- •1.1 Введение
- •История развития биотехнологических процессов
- •1.3 Микроорганизмы, используемые в биотехнологических процессах
- •2 Производство белков одноклеточных организмов
- •2.1 Целесообразность использования микроорганизмов для
- •Производства белка
- •2.2 Использование дрожжей
- •2.3 Использование бактерий
- •2.4 Использование водорослей
- •2.5 Использование микроскопических грибов
- •3 Методы генетического конструирования
- •In vivo
- •3.1 Регуляция метаболизма в микробной клетке
- •3.2 Мутагенез и методы выделения мутантов
- •3.3 Плазмиды и конъюгация у бактерий
- •3.4 Фаги и трансдукция
- •3.5 Гибридизация эукариотических организмов
- •3.6 Слияние протопластов или фузия клеток
- •4 Технология производства метаболитов
- •4.1 Классификация продуктов биотехнологических производств
- •4.2 Общая схема биотехнологического производства продуктов микробного синтеза
- •4.3 Биотехнология получения первичных метаболитов
- •4.3.1 Производство аминокислот
- •4.3.2 Производство витаминов
- •4.3.3 Производство органических кислот
- •4.4 Биотехнология получения вторичных метаболитов
- •4.4.1 Получение антибиотиков
- •4.4.2 Получение промышленно важных стероидов
- •5 Биоиндустрия ферментов
- •5.1 Область применения и источники ферментов
- •5.2 Выбор штамма и условий культивирования
- •5.3 Технология культивирования микроорганизмов – продуцентов ферментов и выделение ферментов
- •5.4 Инженерная энзимология и ее задачи
- •6 Методы генетического конструирования
- •In vitro
- •6.1 Биотехнология рекомбинантных днк
- •6.2 Конструирование рекомбинантных днк
- •6.3 Идентификация клеток-реципиентов, содержащих рекомбинантные гены
- •6.4 Экспрессия чужеродных генов
- •6.4.1 Клонирование в бактериях
- •6.4.2 Клонирование в дрожжах
- •6.4.3 Клонирование в клетках животных
- •6.5 Использование генетической инженерии в животноводстве
- •6.6 Генная инженерия растений
- •7 Основы клеточной инженерии растений
- •7.1 История предмета
- •7.2 Методы и условия культивирования изолированных тканей и клеток растений
- •7.3 Дедифференцировка на основе каллусогенеза
- •7.4 Типы культур клеток и тканей
- •7.5 Общая характеристика каллусных клеток
- •7.6 Морфогенез в каллусных тканях как проявление тотипотентности растительной клетки
- •7.6.1 Дифференцировка каллусных тканей
- •7.6.2 Гистогенез (образование тканей)
- •7.6.3 Органогенез
- •7.6.4 Соматический эмбриогенез
- •7.7 Изолированные протопласты, их получение, культивирование, применение
- •7.8 Клональное микроразмножение и оздоровление растений
- •8 Экологическая биотехнология
- •8.1 Получение биогаза
- •8.2 Производство биоэтанола
- •8.3 Очистка сточных вод
- •8.3.1 Методы очистки сточных вод
- •8.3.1.1 Механические методы
- •8.3.1.2 Химические методы
- •8.3.1.3 Физико-химические методы
- •8.3.1.4 Биологический метод
- •8.3.2 Отстой сточных вод и его использование
- •9 Контрольные вопросы
- •Список литературы
- •Содержание
- •Краткий курс биотехнологии
4.3 Биотехнология получения первичных метаболитов
4.3.1 Производство аминокислот
В промышленности аминокислоты получают:
1) гидролизом природного белоксодержащего сырья;
2) химическим синтезом;
3) микробиологическим синтезом;
4) биотрансформацией предшественников аминокислот с помощью микроорганизмов или выделенных из них ферментов (химико-микробиологический метод).
Для гидролиза могут быть использованы отходы мясоперерабатывающей промышленности (отходы обработки животного сырья, кровь и т.д.), яичный белок, казеин молока, клейковина пшеницы, соевый шрот и т.д. При гидролизе белоксодержащее сырье нагревают с растворами кислот и щелочей, при температуре от 100 до 105 ºС в течение 20…48 часов. При этом аминокислоты переходят в гидролизат, и для выделения отдельных аминокислот необходима сложная многостадийная очистка. Кроме того, само сырье считается дефицитным и дорогим, поэтому аминокислоты имеют высокую себестоимость. Кроме того, может разрушиться часть аминокислот, таких как триптофан, цистеин, метионин, тирозин, а также происходит рацемизация.
Химический синтез аминокислот достаточно эффективен, однако его недостатком является то, что в процессе синтеза образуется смесь из биологически активной L-формы и D-изомера аминокислоты. D-форма является балластом, так как не усваивается животными и человеком, а некоторые D-формы аминокислот обладают токсическими свойствами. Разделение изомеров – дорогая и трудоемкая процедура. Синтетически производится незаменимая аминокислота метионин.
Наиболее перспективен и экономически выгоден микробиологический синтез аминокислот; 60 % высокоочищенных препаратов аминокислот получают именно этим способом. Преимущество его состоит в возможности получения L-аминокислот на основе возобновляемого сырья.
В последние годы широко используется биотрансформация предшественников аминокислот, полученных химическим синтезом с помощью клеток микроорганизмов или иммобилизированных ферментов.
Среди продуцентов аминокислот используются дрожжи (30 %), актиномицеты (30 %), бактерии (20 %).
Brevibacterium flavum и Corynebacterium glutamicum более трети сахаров превращают в лизин.
Для селекции продуцентов используются микроорганизмы, относящиеся к родам Micrococcus, Brevibacterium, Corynebacterium, Arthrobacter.
Глутаминовая кислота – первая аминокислота, полученная микробным синтезом. Глутаминовая кислота относится к заменимым кислотам, обладает приятными органолептическими свойствами и находит самое широкое применение. Ее продуцентами являются бактерии Corinebacterium glutamicum, Brevibacterium flavum и др.
Лизин образуют многие микроорганизмы: бактерии, актиномицеты, сине-зеленые водоросли, некоторые виды микроскопических грибов. В нашей стране в качестве продуцентов лизина используют бактерии родов Corinebacterium (С. glutamicum), Micrococcus, Brevibacterium.
Триптофан образуют микроорганизмы бактериального и грибного происхождения: родов Micrococcus sp., Candida utilis, Bacillus subtilis.
Основными потребителями аминокислот являются сельское хозяйство и пищевая промышленность. Аминокислоты, чаще всего лизин, используют в качестве обогатителей кормов и пищевых продуктов растительного происхождения для повышения их питательной ценности и для сбалансирования пищи по незаменимым аминокислотам. Использование 1 т лизина в комбикормовой промышленности позволяет экономить от 40 до 50 т фуражного зерна.
Некоторые аминокислоты используют в качестве приправ, так как они обладают определенными вкусовыми свойствами и могут сообщать продукту приятные аромат и вкус. Большое распространение имеет глутаминовая кислота и ее натриевая соль (глутамат натрия), которая является эффективным усилителем вкуса мясных и овощных блюд. Данную аминокислоту добавляют во многие продукты при консервировании, замораживании и длительном хранении.
Для улучшения органолептических показателей мясных продуктов, придания им специфического приятного вкуса и аромата используют цистин, лизин, гистидин. Цистеин и цистин с глутаматом натрия создают имитацию запаха и вкуса мяса, что используется при приготовлении приправ.
Многие аминокислоты: лизин, аланин, пролин, валин и другие могут снимать неприятные запахи и используются в качестве дезодорантов пищевых продуктов.
Аминокислоты обладают оригинальным вкусом и участвуют в образовании вкусовых особенностей пищевых продуктов. Например, аспарагиновая и глутаминовая кислоты, кислые на вкус, в нейтральных растворах имеют очень приятный оригинальный вкус, глицин обладает характерным вкусом «освежающей» сладости, которая по интенсивности близка к сахарозе.
Особый интерес представляет подсластитель аспартам, молекулу которого образуют две аминокислоты – фенилаланин и аспарагиновая кислота. Эти аминокислоты синтезируются микробиологическим путем, а аспартам из этих мономеров – с помощью ферментов. Сладость аспартама в 200 раз превышает сладость сахарозы.