
- •Интервальная оценка генеральной средней по выборке (большой и малой). Доверительный интервал. Доверительная вероятность.
- •Механические колебания. Виды колебаний. Графики зависимостей смещения от времени, характеристики колебаний.
- •Вынужденные колебания. Резонанс. Сложное колебание и его гармонический спектр.
- •Механические волны. Виды волн. Уравнение плоской волны. Характеристики волны: фаза, длина, фронт, скорость. Поток энергии волны. Интенсивность волны.
- •Эффект Доплера и его использование в медицине.
- •Звук. Физические характеристики звука: частота, интенсивность, звуковое давление. Связь интенсивности и звукового давления.
- •Скорость волны в среде, акустический импеданс. Коэффициент проникновения звуковой волны.
- •Высота тона.
- •Громкость ( ).
- •Механическое действие.
- •Тепловое действие.
- •Химическое действие.
- •Стационарное (ламинарное) течение. Внутреннее трение (вязкость) жидкости. Уравнение Ньютона. Ньютоновские и неньютоновские жидкости.
- •Ламинарное течение жидкости в цилиндрических трубах. Формула Пуазейля. Турбулентное течение. Число Рейнольдса. Гидравлическое сопротивление.
- •Механические свойства сосудов. Уравнение Ламе. Ударный объем крови. Пульсовая волна, скорость ее распространения. Физические основы клинического метода измерения давления крови.
- •Биологические мембраны, их структура и функции. Физические свойства и параметры биомембран (толщина, жидкокристаллическое состояние, микровязкость, трансмембранный потенциал, электроемкость).
- •Перенос незаряженных молекул (атомов) через мембраны. Уравнение Фика и его выражение для мембраны. Коэффициент проницаемости мембран.
- •Перенос ионов через мембраны. Электродиффузия. Уравнение Нернста-Планка.
- •Пассивный транспорт и его основные виды. Понятие об активном транспорте.
- •Биоэлектрические потенциалы. Потоки ионов через мембрану в стационарном состоянии. Потенциал покоя. Уравнение Гольдмана-Ходжкина-Катца. Механизм генерации потенциала действия.
- •Задачи исследования электрических полей в организме. Электрический диполь. Понятие о дипольном электрическом генераторе (токовом диполе). Теория Эйнтховена и объяснение электрокардиограмм.
- •Активное и реактивное сопротивления в цепи переменного тока (импеданс). Импеданс тканей организма. Частотная зависимость импеданса. Эквивалентная электрическая схема тканей организма.
- •Электромагнитная волна. Уравнения электромагнитной волны. Интенсивность электромагнитной волны. Шкала электромагнитных волн.
- •Физические процессы, происходящие в тканях организма под воздействием: постоянного тока, тока низкой частоты. Пороги ощутимого и не отпускающего тока.
- •Физические процессы, происходящие в тканях организма под воздействием: тока высокой частоты, переменного магнитного поля, переменного электрического поля.
- •Интерференция света. Когерентные волны. Интенсивность света при интерференции. Условия для наибольшего усиления (максимум) и ослабления (минимум) волн.
- •Интерференция света в тонких пластинках (пленках). Просветление оптики.
- •Дифракция света. Принцип Гюйгенса-Френеля. Дифракционная решетка. Условие для главных максимумов (основная формула дифракционной решетки). Дифракционный спектр.
- •Поляризация света. Свет естественный и поляризованный. Закон Малюса. Способы получения поляризованного света: отражение на границе двух диэлектриков (закон Брюстера) и двойное лучепреломление.
- •Геометрическая оптика как предельный случай волновой оптики. Законы преломления света. Полное внутреннее отражение света. Волоконная оптика и ее использование в медицине.
- •Линза. Формула тонкой линзы. Аберрации линз: сферическая, хроматическая, астигматизм.
- •Оптическая система глаза: светопроводящий и световоспринимающий аппарат. Главная оптическая и зрительная оси глаза. Аккомодация. Расстояние наилучшего зрения. Ближняя точка глаза.
- •Недостатки оптической системы глаза и способы их компенсации. Наименьший угол зрения как характеристика разрешающей способности глаза. Острота зрения.
- •Оптическая микроскопия. Лупа, ход лучей в лупе, ее увеличение. Ход лучей в микроскопе, формула для увеличения.
- •Предел разрешения и полезное увеличение микроскопа. Специальные приемы микроскопии: ультрафиолетовый микроскоп, иммерсионные среды, ультрамикроскопия, микропроекция и микрофотография.
- •Тепловое излучение тел. Характеристики теплового излучения. Черное и серое тела. Закон Кирхгофа.
- •Законы излучения черного тела: формула Планка, закон Стефана-Больцмана и закон смещения Вина.
- •Тепловое излучение тела человека. Физические основы термографии. Излучение Солнца: солнечная постоянная, спектр излучения, изменение спектрального состава радиации земной атмосферой.
- •Основной закон радиоактивного распада. Постоянная распада, период полураспада. Активность.
- •Биофизические основы использования радионуклидов в медицине. Позитрон-эмиссионная томография, сцинтиграфия.
- •Дозиметрия ионизирующих излучений. Поглощенная и экспозиционная дозы. Мощность дозы, связь мощности экспозиционной дозы и активности радиоактивного препарата.
- •Электронные энергетические уровни атомов. Энергетические уровни молекул. Особенности излучения и поглощения энергии атомами и молекулами.
- •Люминесценция. Различные виды люминесценции. Хемилюминесценция. Фотолюминесценция: флуоресценция и фосфоресценция, механизм возникновения. Спектр фотолюминесценции, закон Стокса.
- •Квантовый выход люминесценции. Закон Вавилова. Количественный и качественный люминесцентный анализ. Люминесцентный микроскоп.
- •Фотобиологические процессы, их основные стадии. Квантовый выход и поперечное сечение фотохимических превращений молекул. Спектры поглощения и спектры действия. Понятие о фотомедицине.
- •Высокая интенсивность.
Основной закон радиоактивного распада. Постоянная распада, период полураспада. Активность.
Радиоактивный распад – статистическое явление. Невозможно предсказать, когда распадется данное нестабильное ядро, можно лишь сделать некоторые суждения о данном событии.
Число радиоактивных ядер, которые еще не распались, убывает со временем по экспоненциальному закону.
Где
– постоянная распада,
– исходное число радиоактивных ядер.
На практике вместо постоянной распада чаще используют другую характеристику – период полураспада T. Это время, в течение которого распадется половина радиоактивных ядер.
Скорость распада, называемая активностью, является существенной характеристикой, т.к. определяет время полураспада и полного распада вещества. Активность препарата тем больше, чем больше радиоактивность ядер и чем меньше их период полураспада.
Характеристики взаимодействия корпускулярного ионизирующего излучения с веществом: линейная плотность ионизации; линейная тормозная способность вещества; средний линейный пробег частицы. Взаимодействие гамма-излучения с веществом. Ослабление потока гамма-излучения веществом. Биофизические основы действия ионизирующих излучений на организм.
Заряженные частицы и гамма-фотоны, распространяясь в веществе, взаимодействуют с электронами и ядрами, в результате чего изменяется состояние как вещества, так и частиц.
Взаимодействие частицы с веществом количественно оценивается линейной плотностью ионизации, линейной тормозной способностью вещества и средним линейным пробегом частицы.
Под линейной плотностью ионизации ( ) понимают отношение числа ионов одного знака, образованных заряженной ионизирующей частицей на элементарном пути, к этому пути.
Линейной тормозной способностью ( ) называют отношение энергии, теряемой заряженной частицей на прохождении пути в веществе, к этому пути.
Средним
линейным пробегом
заряженной ионизирующей частицы является
среднее значение расстояния между
началом и концом пробега в данном
веществе.
Гамма-лучи, в отличие от α-лучей и β-лучей, не отклоняются электрическими и магнитными полями, характеризуются большей проникающей способностью при равных энергиях и прочих равных условиях. Гамма-кванты вызывают ионизацию атомов вещества. Основные процессы, возникающие при прохождении гамма-излучения через вещество:
Фотоэффект — энергия гамма-кванта поглощается ядром атома, и с внешней оболочки атома вылетает электрон.
Комптоновское рассеяние (Комптон-эффект)- гамма-квант рассеивается при взаимодействии с электроном, при этом образуется новый гамма-квант, меньшей энергии.
Эффект образования пар — гамма-квант в поле ядра превращается в электрон и позитрон.
Ядерный фотоэффект — при энергиях выше нескольких десятков МэВ гамма-квант способен выбивать нуклоны из ядра.
Ослабление гамма-излучения в веществе описывают экспоненциальным законом, который выполняется приближенно, особенно при больших энергиях.
Где
– потом гамма-излучения в вещества,
– падающий поток излучения,
– линейный коэффициент ослабления.
Рассматривая первичные физико-химические процессы в организме при действии ионизирующих излучений, следует учитывать две принципиально разные возможности взаимодействия: с молекулами воды и с молекулами органического вещества.
Под действием ионизирующего излучения в организме происходят химические превращения вещества, получившие название радиолиза.
Значительные биологические нарушения вызывают ничтожно малое количество поглощаемой энергии излучения. Это передается через генетический аппарат клеток. Для биологического действия специфичен латентный период. Наиболее чувствительным к излучению является ядро клетки. При облучении прежде всего повреждаются растущие ткани.
В медицине используется в диагностическом (фармацевтическом, исследовательском) виде и как лечение.