
- •1. Электрические заряды. Строение атома. Энергетические уровни и энергетические зоны. Положительные и отрицательные ионы.
- •2. Электрическое поле. Взаимодействие электрических зарядов с электрическим полем. Закон Кулона.
- •3. Электрический потенциал и разность потенциалов.
- •4. Электрическая емкость. Конденсатор. Способы изменения электрической емкости конденсаторов. Параллельное и последовательное соединения конденсаторов.
- •5. Постоянный электрический ток. Условия существования электрического тока. Направление, сила и плотность постоянного электрического тока.
- •6. Электрическое сопротивление. Единицы измерения сопротивления. Зависимость сопротивления от температуры.
- •7. Резисторы. Виды резисторов. Параллельные и последовательные соединения резисторов.
- •8. Закон Ома для участка и полной электрической цепи.
- •9. Законы Кирхгофа.
- •10. Работа и мощность электрического тока.
- •11. Переменный электрический ток и его основные параметры: период, частота, амплитуда, мгновенное и среднее (действующее) значения.
- •12. Основные сведения о полупроводниках. Разрешенные и запрещенные зоны. Валентная зона и зона проводимости.
- •14. Полупроводники с электронной электропроводностью. Энергетическая диаграмма. Формулы для концентраций основных и неосновных носителей. Положение уровня Фермы.
- •15. Полупроводники с дырочной электропроводностью. Энергетическая диаграмма. Формулы для концентраций основных и неосновных носителей. Положение уровня Фермы.
- •16. Неравновесная и избыточная концентрации основных и неосновных носителей зарядов в полупроводнике.
- •17. Диффузионный и дрейфовый токи в полупроводнике. Причины, вызывающие их появление. Формулы для плотностей токов.
- •19. Прямое включение эдп. Явление инжекции неосновных носителей. Влияние прямого напряжения на контактную разность потенциалов и ширину запирающего слоя. Энергетическая диаграмма.
- •20. Обратное включение эдп. Обратный ток. Включение обратного напряжения на ширину запирающего слоя. Энергетическая диаграмма.
- •21. Вольтамперная характеристика эдп (вах). Уравнение теоретической вах и ее график.
- •22. Емкость эдп. Зарядная и диффузионная емкости, их физическая интерпретация. Графическая зависимость зарядной емкости от обратного напряжения.
- •23. Эквивалентные схемы эдп при прямом и обратном включениях.
- •24. Разновидности электрических переходов. Электрический переход между полупроводником и металлом (переход или барьер Шотки). Выпрямляющие и невыпрямляющие электрические переходы.
- •25. Полупроводниковые диоды. Классификация, основные параметры и система обозначений.
- •26. Выпрямительные полупроводниковые диоды. Назначение, основные параметры, классификация. Простейший выпрямитель на полупроводниковом диоде.
- •27. Полупроводниковые стабилитроны. Назначение, вах и основные параметры. Схема простейшего стабилизатора напряжения на стабилитроне и принцип его работы.
- •28. Варикапы. Назначение вольт-фарадная характеристика. Схема включения варикапа в колебательный контур для изменения его резонансной частоты.
- •29. Туннельные диоды. Энергетическая диаграмма при прямом и обратном включениях. Вах. Пояснить появление на вах участка с отрицательным сопротивлением.
- •30. Общие сведения о биполярных транзисторах (бт). Структурные схемы бт типов р-n-р и n-р-n. Условные графические обозначения.
- •34. Статические гибридные характеристики бт, включенного по схеме оэ. Функциональные зависимости. Схема для их экспериментального снятия. График семейств входных и выходных характеристик.
- •35. Малосигнальные h-параметры бт, включенного по схеме оэ. Формулы и методика определения по статическим гибридным характеристикам.
- •39. Параметры режима усиления. Формулы, методика определения по статическим гибридным характеристикам в схеме оэ,oб
- •40. Факторы, ограничивающие полезную выходную мощность бт. Определение рабочей области на выходных статических гибридных характеристиках.
- •41. Особенности работы бт в ключевом режиме. Схема, графики напряжений и токов.
- •42. Схема ключа с транзистором Шотки. Пояснить причину уменьшения времени рассасывания в таком ключе.
- •43. Устройство, принцип действия, статические характеристики и параметры мдп-транзисторов с индуцированным каналом п- и р- типов.
- •45. Устройство, принципы действия статические характеристики и параметры мдп-транзистора с управляющим р-п-переходом.
- •46. Устройство, принцип действия, статические характеристики и параметры меп-транзисторов.
- •47. Дифференциальные параметры полевых транзисторов и методика их определения по статическим характеристикам.
- •48. Работа пт в режиме усиления. Схема простейшего усилителя. Параметры режима усиления и методика их определения по характеристикам.
- •49. Инвертoр на мдп-транзисторах с индуцированным каналом. Схема, графики входного и выходного напряжения. Уровни выходного напряжения u0 и u1.
- •52. Этапы изготовления полупроводниковых имс, обеспечивающие формирование в кристалле полупроводника транзисторной структуры.
- •53. Интегральные транзисторы n-p-n и p-n-p. Способ увеличения коэффициента передачи тока h21э транзистора типа p-n-p. Многоколлекторный транзистор.
- •54. Интегральные многоэмиттерые транзисторы. Структура. Схема включения мэт в цифровых устройствах.
- •55. Интегральные транзисторы с инжекционным питанием. Структурная и эквивалентная схемы. Принципа работы.
- •56. Диоды, резисторы и конденсаторы полупроводниковых имс.
- •57.Фоторезисторы
- •58. Фотодиод, устройство, принцип действия, схема включения.
- •59. Фототранзистор, устройство, принцип действия, схема включения, выходные характеристики.
- •60. Полупроводниковые источники излучения. Светоизлучающие диоды. Оптопары.
30. Общие сведения о биполярных транзисторах (бт). Структурные схемы бт типов р-n-р и n-р-n. Условные графические обозначения.
БТ наз. ПП электропреобразовательный прибор с двумя взаимодействующими между собой электрич. переходами и тремя выводами и пригодный для усиления мощности. В БТ эл. ток создаётся как основными, так и неосн. носителями заряда. Электрич. переходы БТ образованы тремя областями с чередующимся типом проводимости. В зависимости от порядка чередования этих областей различают транзисторы p-n-p и n-p-n типов. В микроэлектронике в основном используются тр. n-p-n типа.
Структура БТ n-p-n типа показана на рис. 4.1,а.Средняя обл. p-типа наз. базой. Одна из крайних областей наз. эмиттером(э.), другая-коллектором(к.). Обычно концентрация примесей в э. и к. делается значительно больше, чем в базе,т.е. nn0>>pp0. ЭДП, образованный между э. и базой наз. эмиттерным, а между базой и к.-коллекторным. Условное обозначение транзисторов n-p-n и p-n-p показано соответственно нарис.4.1,б и 4.1,в.Работа БТ p-n-p и n-p-n аналогичны, различие заключ. лишь в полярности подключения источников питания и направления протекания токов через электроды.
Структура БТ n-p-n типа показана на рис.4.2.Вследствие выполнения условия nn0>>pp0эмиттерный и коллекторный ЭДП располагаются в основном в области базы. Часть базовой области, расположенная непосредственно между эмиттерным и коллекторным ЭДП наз. активной, а вне этих переходов-пассивной. Площадь коллекторного ЭДП делается значительно больше площади эмиттерного ЭДП.
Кристалл ПП с такой структурой в БТ дискретного исполнения помещается в герметизированный корпус, изолирующий его от воздействия внешней среды.
Рис. 1
Рис.
2
34. Статические гибридные характеристики бт, включенного по схеме оэ. Функциональные зависимости. Схема для их экспериментального снятия. График семейств входных и выходных характеристик.
Статическими характеристиками транзистора наз. графические зависимости между его токами и напряжениями. Существует 6 типов систем статических характеристик, из которых практическое использование получили 3 типа: Y,Z и H.Из-за более простой реализации схемы, применяемой для экспериментального снятия характеристик, наибольшее распространение получила Н-система, в которой в качестве независимых переменных (аргументов) приняты входной ток и выходное напряжение: UВХ=f(IВХ,UВЫХ), (4.9) IВЫХ=f(IВХ,UВЫХ). (4.10) В статическом режиме эти зависимости выражаются четырьмя семействами характеристик:
Входными Uвх=f(Iвх) при Uвых=const,
Выходными Iвых= f(Uвых) при Iвх=const,
Обратной связи Uвх= f(Uвых) при Iвх=const,
Прямой передачи Iвых= f(Iвх) при Uвых=const,
Наибольшее практическое применение получили входные и выходные характеристики, выд которых зависит от способа включения БТ.
Для снятия статических характеристик БТ оэ n-p-n-типа транзистор, измерительные приборы и регулируемые источники питания включаются по схеме, показанной на рис. 4.8Вид полученных при этом входных Uбэ=f(Iб) при Uкэ=const и выходных Iк=f(Uкэ) при Iэ=const характеристик показан нарис 4.9.Характеристики имеют ярко выраженный нелинейный характер.
При Uкэ=0 (коллектор и эмиттер замкнуты) эмиттерный и коллекторный ЭДП оказываются выключенными в прямом направлении и входная характеристика представляет собой прямую ветвь ВАХ двух параллельно включенных ЭДП. При Uбэ=0 и Uкэ>0 эмиттерный ток равен нулю, вследствие чего IБрек=0. Так как IБ=IБрек-IКБО, то в цепи базы протекает ток -IКБО, имеющий противоположное направление по отношению к направлению тока базы в рабочем режиме транзистора. При Uбэ= U'бэ в эмиттерной цепи появляется ток Iэ, создающий рекомбинационную составляющую тока базы IБрек= IКБО. Поскольку при Uкэ>0 коллекторный переход закрыт, то при дальнейшем увеличении напряжения Uбэвходная характеристика представляет собой прямую ветвь одного эмиттерного ЭДП. Iк=h21БIБ+(1+h21Э)IКБО
На выходных характеристиках можно выделить три области: область насыщения (заштрихованная область левее линии ОА), область отсечки (заштрихованная область ниже линии ОВ) и область активного нормального режима (не заштрихованная область между линиями ОА и ОВ).
Статические характеристики используются для расчета нелинейных цепей, содержащих транзисторы.
Рис. 1
Рис. 2
Влияние температуры на статические характеристики БТ.
С увеличением температуры увеличивается количество генерируемых в p- и n- областях пар электрон-дырка. Это приводит к увеличению в этих областях не основных носителей заряда и пропорциональным снижению концентрации основных носителей. При очень высокой температуре электропроводность областей транзистора приближается к собственной и его нормальная работа нарушается. Расчеты и экспериментальные исследования показывают, что максимальная рабочая температура германиевых транзисторов лежит в пределах +70…+100^оС, а кремниевых от +125…200^оС.