Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курсовая работа Аналоговые электронные устройства (вариант А2, В5).doc
Скачиваний:
131
Добавлен:
01.04.2014
Размер:
1.01 Mб
Скачать

Содержание

ВВЕДЕНИЕ

1 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ

1.1 Анализ технического задания

1.2 Разработка структурной схемы

1.3 Определение числа каскадов

2 РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ СХЕМЫ УСИЛИТЕЛЯ МОЩНОСТИ

2.1 Выбор схемы усилителя мощности

2.2 Выбор цепи термостабилизации

2.3 Расчёт оконечного каскада

2.4 Расчёт предоконечного каскада

2.5 Расчёт входного каскада

3 РАСЧЁТ УЗЛОВ ПРЕДВАРИТЕЛЬНОГО УСИЛЕНИЯ

3.1 Расчет мостового регулятора тембра

3.2 Расчёт каскадов предварительного усиления

ЗАКЛЮЧЕНИЕ

ЛИТЕРАТУРА

ВВЕДЕНИЕ

Усилители сигналов находят широкое применение во многих отраслях науки и техники. Они используются в радиовещании, радиосвязи, телевидении, дальней связи по проводам, радиолокации, радионавигации, измерительной, вычислительной технике и так далее.

Всякий усилитель характеризуется полосой пропускания от до . Усилители, у которых нижняя частота пропускания равна нулю, называются усилителями постоянного тока. Усилители переменного тока имеют .

Для усиления низкочастотных сигналов используются усилители низкой частоты, иначе называемые апериодическими усилителями; в соответствии с этим усилители высокой частоты, иначе избирательные усилители, применяются для усиления высокочастотных сигналов.

К усилителям низкой частоты относятся усилители постоянного тока, усилители звуковой частоты, усилители телевизионных сигналов, получившие название видеоусилителей, и другие.

Усилители высокой частоты подразделяются на резонансные и полосовые. В частности усилитель промежуточной частоты супергетеродинного радиоприемника обычно представляет собой полосовой усилитель, у которого зависимость усиления от частоты в большей степени приближается к идеальной прямоугольной форме, чем у резонансного усилителя.

В зависимости от вида усиливаемых сигналов усилители как низкой так и высокой частоты подразделяются на усилители гармонических сигналов и усилители импульсных сигналов.

По типу усилительных элементов усилители делятся на ламповые, диэлектрические, магнитные, транзисторные и на интегральных микросхемах.

По области применения – микрофонные, трансляционные, измерительные, телевизионные, магнитофонные, радиолокационные и так далее.

Простейший усилитель содержит один усилительный элемент. При необходимости получения усиления большего, чем может обеспечить один элемент, используется более развитой усилитель, содержащий несколько усилительных элементов. Усилительный элемент и относящиеся к нему элементы связи и питания образуют усилительный каскад. Таким образом, в общем случае усилитель содержит несколько усилительных каскадов, сокращенно каскадов. Основой каскада являются сам усилительный элемент; какие именно из элементов являются элементами связи данного каскада (усилительного элемента), устанавливают, исходя из наиболее удобных соотношений для анализа и расчета.

Первые каскады усилителя работают при относительно низком напряжении сигнала и носят название каскадов предварительного усиления иначе каскадов усиления напряжения, их основным назначением является повышение уровня сигнала.

Выходная мощность, отдаваемая в нагрузку, создается оконечным каскадом, представляющий собой каскад усиления мощности. У усилителей со сравнительно большой входной мощностью, предоконечный каскад, так же как и оконечный, является каскадом усиления мощности.

1 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ

1.1 Анализ технического задания

В техническом задании на схемотехническое проектирование усилителя сигналов звуковой частоты указывались следующие основные параметры:

- назначение и группа сложности аппаратуры – стационарная;

- Рн, Вт – номинальная выходная мощность усилителя – 12;

- Rн, Ом – сопротивление нагрузки – 4;

- Ег, мВ – ЭДС источника сигнала – 30;

- Rг, кОм – внутреннее сопротивление источника сигнала – 100;

- kг, % – допустимый коэффициент гармоник – 1,5;

- fн,fв, Гц – нижняя и верхняя предельные частоты – 80..10000;

- М, +дБ – неравномерность АЧХ в полосе – 3;

- Δbт, +дБ – пределы регулировки тембра –±6;

- tomax – максимальное значение температуры окружающей среды – 55;

- группа сложности – 3.

Назначение и группа сложности непосредственно влияют на технические особенности устройства.

В стационарной аппаратуре напряжение питания определяется требуемой мощностью УСЗЧ, причем в аппаратуре нулевой и первой групп сложности допустимо использование двуполярного питания.

1.2 Разработка структурной схемы

Изобразим укрупнённую структурную схему разрабатываемого усилителя сигналов звуковой частоты (УСЗЧ) (см. рисунок 1.1).

Рисунок 1.1 – Укрупнённая схема разрабатываемого усилителя сигналов звуковой частоты

Предварительный усилитель (УП) осуществляет основное усиления сигнала по напряжению до уровня 0,1...1 В, необходимого для работы усилителя мощности (УМ). Кроме того, в УП осуществляются оперативные регулировки уровня сигнала (громкости) и тембра (коррекция АЧХ).

Усилитель мощности обеспечивает основное усиление мощности до уровня, заданного в ТЗ.

1.3 Определение числа каскадов

Расчёт произведём, исходя из требуемого усиления сигнала по напряжению.

1) Определяем номинальный сквозной коэффициент передачи:

(1.1)

где Pн – номинальная выходная мощность усилителя;

Rн – сопротивление нагрузки;

Ег – ЭДС источника сигнала.

Подставим исходные данные и получим:

2) Задаёмся необходимым запасом усиления для обеспечения заданных характеристик усилителя:

а) на введение ООС запас численно равен глубине обратной связи F, обеспечивающей снижение нелинейных искажений оконечного каскада усилителя до установленного заданием предела:

(1.2)

где kг ок= 15...20 % – коэффициент гармоник оконечного двухтактного каскада без ООС;

kг зад= 0,2 % – допустимый коэффициент гармоник.

Подставим исходные данные и получим:

б) запас на регулировку тембра определяется коэффициентом коррекции частотной характеристики:

(1.3)

где ∆bmax – пределы регулировки тембра.

Подставим исходные данные и получим:

в) технологический запас, учитывающий разброс параметров компонентов:

3) Требуемый сквозной коэффициент усиления:

(1.4)

Подставим исходные данные и получим:

4) Определяем число каскадов усиления по напряжению:

(1.5)

где Кn=40 – усредненный коэффициент усиления по напряжению для одного каскада.

Подставим данные и получим:

5) Определяем необходимость мер по согласованию цепей передачи сигнала в усилительном тракте.

Для уменьшения потерь в цепи источника сигнала входное сопротивление усилителя должно удовлетворять условию:

(1.6)

где Rг – внутреннее сопротивление источника сигнала.

Подставим данные и получим:

Входное сопротивление усилителя зависит от схемы включения, режима работы и параметров транзисторов. Типовые значения Rвх каскадов предварительного усиления на биполярных транзисторах составляют:

- при включении ОЭ Rвх ОЭ≈ 1...10 кОм;

- при включении ОК Rвх ОК≈ 10...100 кОм.

Для каскадов, собранных на полевых транзисторах с управляющим p-n переходом:

- при включении ОИ Rвх ОИ≈ 0,1...1 МОм;

- при включении ОС Rвх ОС≈ 1...10 МОм.

Таким образом, если для схемы ОЭ не выполняется условие (1.6), то на входе усилителя желательно включить дополнительный согласующий каскад по схеме ОК (эмиттерный повторитель). Поскольку повторитель не усиливает по напряжению, то данный каскад не входит в число каскадов, рассчитанное по формуле (1.5).

Если и эмиттерный повторитель не обеспечивает требуемого согласования, то принимают решение об использовании полевых транзисторов. При этом следует иметь в виду, что у каскада на полевом транзисторе по схеме ОИ усиление примерно на порядок меньше, чем у схемы ОЭ и обычно не превышает 3...10 раз (по напряжению). Поэтому данный каскад войдет в число, определенное по выражению (1.5), лишь при наличии достаточного запаса в величине КЕ тр. В отношении истокового повторителя (схема ОС) принимают К=1.