Скачиваний:
62
Добавлен:
01.04.2014
Размер:
150.02 Кб
Скачать

Заключение

В настоящее время можно сформулировать следующие устойчивые тенденции в производстве изделий микроэлектроники.

Непрерывно растет функциональная сложность интегральных микросхем. Все большее число радиоэлектронных узлов, устройств и блоков, ранее выполнявшихся в виде отдельных конструкций по технологии, принятой для изготовления аппаратуры, выполняются в настоящее время в виде полупроводниковых и гибридных микросхем и микросборок. Применение для этих целей базовых матричных кристаллов и однокристальных программируемых логических устройств привело к существенному ускорению этой устойчивой тенденции и придало новый импульс разработкам микроэлектронной аппаратуры в интегральном исполнении. Прогресс в технологии полупроводниковых микросхем, переход к микронным и субмикронным значениям минимального стандартного проектного размера позволяет без особых Затрат на разработку создавать блоки и даже системы радиоэлектронных средств (РЭС) на основе уже имеющихся БИС и СБИС путем формирования их структур в одном полупроводниковом кристалле и создания многоуровневой разводки для осуществления электрических связей между отдельными частями таких гигантских по функциональной сложности однокристальных микроэлектронных РЭС. Это приводит к увеличению возможности и гибкости при проектировании РЭС, поскольку позволяет выбрать необходимый набор освоенных в производстве структур цифровых, логических и аналоговых БИС для размещения их в одном кристалле.

Многообещающими в плане повышения степени интеграции являются трехмерные структуры полупроводниковых микросхем, созданные за счет скоммутированных между собой нескольких уровней (этажей) полупроводникового монокристаллического материала - так называемых трехмерных микросхем. Успех в их создании связывают с успехами лазерной перекристаллизации пленок поликремния, создания в них монокристаллических областей, в которых будут размещены полупроводниковые элементы микросхем, и с развитием технологии последовательного наращивания чередующихся пленок поликремния и диэлектрических пленок. Трехмерные конструкции могут создаваться путем формирования контактных площадок как на рабочей, так и на нерабочей стороне кристаллов, и сборки таких кристаллов в многоэтажный модуль.

Трехмерность V-МДП-транзисторной структуры является фактором существенного повышения плотности упаковки БИС.

В связи с низким выходом годных и ограниченных логическими возможностями перспективы создания V-МДП-БИС невелики. Но такие структуры обладают уникальными способностями управления очень большими токами с высокой скоростью их переключения. Они нашли применение в звуковых высококачественных усилителях мощности, в широкополосных усилителях, в источниках вторичного электропитания для преобразования постоянного тока в переменный при меньших затратах, массе и габаритных размерах, чем традиционные источники питания.

Увеличение функциональной и конструктивной сложности радиоэлектронных средств идет не только за счет интеграции устройств в одном полупроводниковом кристалле, но и за счет более плотного размещения таких кристаллов в составе гибридных микросхем и микросборок. При этом также успех дела решают достижения технологии производства. Тенденции в этом отношении таковы: новые технологические возможности в производстве полупроводниковых микросхем, создание новых принципов формирования пленочных структур и нового технологического оборудования непременно положительно сказываются на достижениях технологии гибридных микросхем. Примером тому могут служить достижения электронной, ионной и плазменной обработки, широко внедрившейся сначала в технологию полупроводниковых, а затем и гибридных микросхем. Заметно сближение двух технологий: пленочные структуры являются неотъемлемой частью полупроводниковых микросхем, в структуре тонкопленочных гибридных микросхем со дня на день следует ожидать появления пленок поликристаллического кремния со сформированными на их основе пассивными и, может быть, активными элементами.

Список использованной литературы:

  1. Березин А. С., Мочалкина О. Р. Технология и конструирование интегральных микросхем. – М. Радио и связь, 1983. – 232 с.

  2. Достанко А. П. Технология интегральных схем. – Минск, Высшая школа, 1982. – 206 с.

  3. Курносов А. И., Юдин В. В. Технология производства полупроводниковых приборов и интегральных микросхем. – М.: Высшая школа, 1986. – 386 с.

  4. Матсон Э. А. Конструирование и технология микросхем. – Минск, Вышэйшая школа, 1989. 207 с.

  5. Схемотехника БИС постоянных запоминающих устройств / О. В. Петросян, И. Я. Козырь, Л. А. Коледов и др. – М.: Радио и связь, 1987. – 304 с.

  6. Черняев В. Н. Технология производства интегральных микросхем и микропроцессоров. –М.: Радио и связь, 1987. – 464 с.

13