
ФЗО, ИТиУвТС, высшая математика КР номер 1 по теме Элементы линейной алгебры и аналитической геометрии
.docx
1. Элементы линейной алгебры и аналитической геометрии
1. Даны векторы a(a1; a2; a3), b(b1; b2; b3), c(c1; c2; c3) и d(d1; d2; d3) в некотором базисе. Показать, что векторы a, b, c образуют базис, и найти координаты вектора d в этом базисе.
a (4;3;-1), b (5;0;4), c (2;1;2), d (0;12;-6).
Векторы a, b, c образуют базис в пространстве R3 в том случае, если равенство a + b + c = 0 выполняется лишь тогда, когда = = = 0.
Рассмотрим это условие:
(4;3;-1) + (5;0;4) + (2;1;2) = (0;0;0) или
Рассмотрим матрицу данной системы и приведем ее к треугольному виду:
Умножим
первую строку на -3, вторую на 4 и сложим
их, умножим третью на 4 и сложим c
первой ;
умножим третью строку на 15, вторую на
21 и сложим их
.
Так как число ненулевых строк в треугольной матрице равно числу переменных, то система имеет единственное решение, а именно = = = 0. Значит, векторы a, b, c образуют базис. Вектор d в базисе a, b, c имеет вид:
1a + 1b + 1c = d.
В расширенном виде:
Рассмотрим расширенную матрицу системы и приведем ее к треугольному виду (см. предыдущие действия):
Получим систему:
Значит, вектор d в базисе a, b, c имеет координаты d(2;-4;6).
16. Даны координаты вершины пирамиды А1А2А3А4 .Найти:
1) длину ребра А1А2;
2) угол между ребрами А1А2 и А1А4;
3) угол между ребром А1А4 и гранью А1А2А3;
4) площадь грани А1А2А3;
5) объём пирамиды;
6) уравнение прямой А1А2;
7) уравнение плоскости А1А2А3;
8) уравнения высоты, опущенной из вершины А4 на грань А1А2А3;
Сделать чертёж.
А1(0;7;1), А2(4;1;5),А3(4;6;3), А4(3;9;8)
-
Длина ребра А1А2 равна расстоянию между этими точками, которое находится по формуле : А
-
Угол между рёбрами А1А2 и А1А4 равен углу между векторами А1А2 и А1А4. Найдём координаты этих векторов.
А1А2 =(4-0;1-7;5-1)=(4;-6;4)
А1А4=(3-0;9-7;8-1)=(3;2;7)
Тогда, если φ угол между векторами А1А2 и А1А4, то
Тогда
-
Угол между ребром А1А4 и гранью А1А2А3 найдём следующим образом: для начала узнаем уравнение грани А1А2А3, затем выпишем нормальный вектор этой грани, найдём угол между нормалью к грани А1А2А3 и вектором А1А4. Тогда искомый угол между гранью А1А2А3 и вектором А1А4 есть разность 900 и полученного последнего угла.
Уравнение плоскости А1А2А3 получим как уравнение плоскости, проходящей через три точки, а именно
или
Значит, нормальный вектор будет иметь координаты N=(-2;2;5). Найдём угол между нормалью к грани А1А2А3 и вектором А1А4.
Тогда
Значит, угол между гранью А1А2А3 и вектором А1А4 равен 33,60.
-
Найдём координаты векторов А1А2 и А1А3.
А1А2 =(4-0;1-7;5-1)=(4;-6;4)
А1А3=(4-0;6-7;3-1)=(4;-1;2)
Тогда площадь грани А1А2А3 будет равна
ед2
-
Объём треугольной пирамиды равен одной шестой объема параллелепипеда, построенного на рёбрах А1А2 , А1А3, А1А4. Тогда
(ед3)
-
Уравнение прямой А1А2 имеет вид:
, где (x0;y0;z0 ) – координаты точки, через которую проходит прямая, а (l;m;n) – координаты направляющего вектора. За координаты (x0;y0;z0 ) можно выбрать координаты точки А1, а за направляющий вектор взять вектор А1А2. Тогда получим:
–
уравнение прямой
А1А2
в симметричном виде.
-
Уравнение плоскости А1А2А3 было найдено в пункте 3), а именно
–
уравнение плоскости
в нормальном виде.
-
Высота, опущенная из вершины А4 на грань А1А2А3 имеет своим направляющим вектором нормальный вектор плоскости А1А2А3 , а значит
-
уравнение высоты в симметричном виде.
Сделаем чертёж.
26. Составить уравнение линии, для каждой точки расстояния от начала координат и от точки А(0,5) относятся, как 3:2.
Пусть M(x;y) – произвольная точка искомой кривой. Найдем нужные расстояния:
d
=
=
– расстояние от начала
координат до
произвольной точки кривой;
d
=
=
– расстояние от точки А до произвольной
точки кривой. Тогда
или
;
Это окружность с центром в точке (0;9) и радиусом равным 6.
36. Доказать совместность данной системы линейных уравнений и решить ее двумя способами: 1) методом Гаусса; 2) средствами матричного исчисления.
1) Для решения системы методом Гаусса рассмотрим расширенную матрицу системы и приведем ее к треугольному виду:
= [умножаем первую
строку на -4, вторую на 7 и складываем их,
умножаем первую на -2, третью на 7 и
складываем их ] =
= [умножаем третью строку на 97, вторую
на -31 и складываем их] =
Ранг расширенной матрицы равен числу ненулевых строк, т.е. равен 3. Теперь рассмотрим матрицу А и приведём её к треугольному виду аналогичными действиями:
.
Ранг матрицы равен числу ненулевых строк, т.е. равен 3. Так как ранг матрицы системы совпадает с рангом расширенной матрицы, то система совместна.
Тогда получим систему:
Тогда получим решение:
x3 = -3; x2 = -4; x1 =2.
2) Для решения
матричным методом нужно рассмотреть
матричное уравнение: AX
= B,
где A
=
,
X
=
,
B
=
.
Тогда X = A-1B.
Вычислим
обратную матрицу
.
Тогда A-1
=
Получим X
= A-1B
==
=
.
46. Найти размерность и базис пространства решений однородной системы линейных уравнений
Рассмотрим расширенную матрицу системы и приведем ее к треугольному виду:
= [умножаем первую
строчку на -2 складываем со второй,
умножаем первую на -1 и складываем с
третьей] =
=
[складываем вторую
строку с третьей] =
.
Ранг расширенной матрицы равен числу ненулевых строк, т.е. равен 3. Теперь рассмотрим матрицу А и приведём её к треугольному виду аналогичными действиями:
.
Ранг матрицы равен числу ненулевых строк, т.е. равен 3. Так как ранг матрицы системы совпадает с рангом расширенной матрицы, то система совместна.
Тогда получим систему:
Пусть х3=t, тогда получим решение:
х4=0,
x3
= t;
x2
=;
x1
=
,
где t – любое число.
56. Найти собственные значения и собственные векторы линейного преобразования, заданного в некотором базисе матриц.
Характеристическое уравнение имеет вид:
1=-2,
2=1,
3=9
– собственные значения линейного
преобразования.
Для
1=-2
найдём собственный вектор.
Собственный
вектор для
1=-2
имеет вид (0;m;0).
Для
2=1
найдём собственный вектор.
Собственный
вектор для
2=1
имеет вид (
;
;t).
Для
3=9
найдём собственный вектор.
.
Собственный
вектор для
3=9
имеет вид (s;
;
s).
66. Привести к каноническому виду уравнение линии второго порядка, используя теорию квадратичных форм
Запишем
данное уравнение в виде:
Найдём
матрицу Т ортогонального оператора,
приводящего данную квадратичную форму
к каноническому
виду.
Запишем характеристическую матрицу:
Её
корнями являются значения
1=1,
2=10.
Для
1=1
найдём собственный вектор.
,
где t
– любое число.
Собственный
вектор-столбец для
1=1
имеет вид
.
Тогда
есть нормированный собственный
вектор-столбец.
Для
2=10
найдём собственный вектор.
,
где s
– любое число.
Собственный
вектор-столбец для
2=10
имеет вид
.
Тогда
есть нормированный собственный
вектор-столбец.
Ортогональный
оператор, приводящий квадратичную форму
к каноническому виду, имеет матрицу
.
Базисными
векторами новой системы координат
являются:
В
системе координат
уравнение данной фигуры примет вид:
Это
эллипс, центр которого находится в точке
(0,0) относительно системы координат
,
а оси симметрии параллельны координатным
осям этой системы.