
- •Эволюция вычислительных систем и история развития компьютерных сетей.
- •Понятие топологии вычислительной сети. Топологии «шина», «звезда», «кольцо». Комбинированные топологии компьютерной сети.
- •Модель osi и ее применение. Уровни модели osi. Связь уровней модели osi со стеком протоколов операционных систем семейства Windows.
- •Семейство стандартов ieee 802.X.
- •Сетевая архитектура Ethernet, ее основные характеристики. Формат кадра Ethernet.
- •Метод доступа csma/cd. Коллизии и алгоритм их определения.
- •Стандарты Ethernet 100 Мбит/сек.
- •Стандарты Ethernet 1000 Мбит/сек. Перспективы развития технологии Ethernet.
- •Технология Token Ring. Маркерный доступ к среде.
- •Технология fddi. Маркерный доступ к среде.
- •Типы кабелей, используемых при построении вычислительных сетей, и их основные характеристики.
- •Оборудование физического и канального уровня технологии Ethernet.
- •Основные функции и характеристики репитеров и концентраторов. Ограничения, возникающие при использовании концентраторов и необходимость структурирования вычислительной сети.
- •Основные функции и характеристики мостов и коммутаторов.
- •Техническая реализация коммутаторов.
- •Составные сети. Стек tcp/ip. Функции сетевого уровня.
- •Маршрутизаторы, их основные функции и характеристики.
- •Протоколы и алгоритмы маршрутизации. Основные метрики алгоритмов маршрутизации.
- •Структура и основные характеристики оптоволоконных кабелей. Одномодовые и многомодовые оптоволоконные кабели.
- •Локальные сети на основе беспроводных технологий.
- •Спутниковые системы беспроводной связи.
- •Глобальные сети. Обобщенная структура и функции глобальной сети.
- •Сети isdn, x25, Frame Relay.
- •Технология atm.
- •Технологии удаленного доступа.
- •Протоколы электронной почты.
- •Протокол передачи гипертекста http.
- •Нет поддержки распределённости.
- •Протокол службы доменных имен dns.
- •Протокол пересылки файлов ftp.
Стандарты Ethernet 100 Мбит/сек.
Быстрый Ethernet (Fast Ethernet, 100 Мбит/с)
100BASE-T — общий термин для обозначения стандартов, использующих в качестве среды передачи данных витую пару. Длина сегмента до 100 метров. Включает в себя стандарты 100BASE-TX, 100BASE-T4 и 100BASE-T2.
100BASE-TX, IEEE 802.3u — развитие стандарта 10BASE-T для использования в сетях топологии «звезда». Задействована витая пара категории 5, фактически используются только две неэкранированные пары проводников, поддерживается дуплексная передача данных, расстояние до 100 м.
100BASE-T4 — стандарт, использующий витую пару категории 3. Задействованы все четыре пары проводников, передача данных идёт в полудуплексе. Практически не используется.
100BASE-T2 — стандарт, использующий витую пару категории 3. Задействованы только две пары проводников. Поддерживается полный дуплекс, когда сигналы распространяются в противоположных направлениях по каждой паре. Скорость передачи в одном направлении — 50 Мбит/с. Практически не используется.
100BASE-SX — стандарт, использующий многомодовое волокно. Максимальная длина сегмента 400 метров в полудуплексе (для гарантированного обнаружения коллизий) или 2 километра в полном дуплексе.
100BASE-FX — стандарт, использующий одномодовое волокно. Максимальная длина ограничена только величиной затухания в оптическом кабеле и мощностью передатчиков, по разным материалам от 2х до 10 километров.
Стандарты Ethernet 1000 Мбит/сек. Перспективы развития технологии Ethernet.
Согласно наблюдениям Группы 802.3ba, требования к полосе пропускания для вычислительных задач и приложений ядра сети растут с разными скоростями, что определяет необходимость двух соответствующих стандартов для следующих поколений Ethernet — 40 Gigabit Ethernet (или 40GbE) и 100 Gigabit Ethernet (или 100GbE). В настоящее время серверы, высокопроизводительные вычислительные кластеры, блэйд-системы, SAN и NAS используют технологии 1GbE и 10GbE, при этом в 2007 и 2008 гг. был отмечен значительный рост последней.
О Terabit Ethernet (так упрощенно называют технологию Ethernet со скоростью передачи 1 Тб/с) стало известно в 2008 году из заявления создателя Ethernet Боба Меткалфа на конференции OFC который предположил, что технология будет разработана к 2015 году, правда, не выразив при этом какой-либо уверенности, ведь для этого придется решить немало проблем. Однако, по его мнению, ключевой технологией, которая может обслужить дальнейший рост трафика, станет одна из разработанных в предыдущем десятилетии — DWDM – технология, позволяющая одновременно передавать несколько информационных каналов по одному оптическому волокну на разных несущих частотах.
Технология Token Ring. Маркерный доступ к среде.
Token ring — Технология локальной вычислительной сети (LAN) кольца с «маркерным доступом» — протокол локальной сети, который находится на канальном уровне модели OSI. Он использует специальный трехбайтовый фрейм, названный маркером, который перемещается вокруг кольца. Владение маркером предоставляет право обладателю передавать информацию на носителе. Кадры кольцевой сети с маркерным доступом перемещаются в цикле.
Token Ring и IEEE 802.5 являются главными примерами сетей с передачей маркера. Сети с передачей маркера перемещают вдоль сети небольшой блок данных, называемый маркером. Владение этим маркером гарантирует право передачи. Если узел, принимающий маркер, не имеет информации для отправки, он просто переправляет маркер к следующей конечной станции. Каждая станция может удерживать маркер в течение определенного максимального времени (по умолчанию - 10 мс).
Если у станции, владеющей маркером, имеется информация для передачи, она захватывает маркер, изменяет у него один бит (в результате чего маркер превращается в последовательность «начало блока данных»), дополняет информацией, которую он хочет передать и отсылает эту информацию к следующей станции кольцевой сети. Когда информационный блок циркулирует по кольцу, маркер в сети отсутствует (если только кольцо не обеспечивает «раннего освобождения маркера» — early token release), поэтому другие станции, желающие передать информацию, вынуждены ожидать. Следовательно, в сетях Token Ring не может быть коллизий. Если обеспечивается раннее высвобождение маркера, то новый маркер может быть выпущен после завершения передачи блока данных.
Информационный блок циркулирует по кольцу, пока не достигнет предполагаемой станции назначения, которая копирует информацию для дальнейшей обработки. Информационный блок продолжает циркулировать по кольцу; он окончательно удаляется после достижения станции, отославшей этот блок. Станция отправки может проверить вернувшийся блок, чтобы убедиться, что он был просмотрен и затем скопирован станцией назначения.