Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзамен БЖД.docx
Скачиваний:
222
Добавлен:
22.06.2019
Размер:
4.04 Mб
Скачать

36) Сопротивление человека, род и частота тока, как факторы, оказывающие влияние на степень воздействия тока на человека.

Экспериментально было установлено, что сопротивление тела человека имеет активно-емкостный характер и слагается из Rк - сопротивление кожи человека, Ск - емкость, образованная за счет диэлектрических свойств кожного покрова и Rвн - электрическое сопротивление внутренних органов. Поверхностный кожный покров, состоящий из наслоения ороговевших клеток, имеет большое сопротивление - в сухом состоянии кожи оно может иметь значения до 500 кОм. Сопротивление внутренних органов человека составляет 400-600 Ом. Емкость кожи составляет 100-150 пФ.

В электрических расчетах за расчетное значение сопротивления тела человека принято Rh, равное 1000 Ом. При этом емкостной составляющей пренебрегают. Не учитывают также нелинейность сопротивления тела человека его зависимость от приложенного напряжения, длительности протекания тока и др.

Наиболее значимыми факторами, определяющими опасность поражения электротоком, являются следующие:

А) Величина и род тока. Этот фактор рассмотрим на примере таблицы 1.1.

Эти значения верны для ≈ 80% испытуемых людей, пол мужской, возраст взрослый, время воздействия составляет до 1 сек., путь тока – «рука-рука» или «рука-ноги».

Опыты показывают, что сопротивление тела человека постоянному току больше, чем переменному любой частоты. 

Б)Сопротивление тела человека Zh.

Сопротивление тела человека Zh имеет активную Rh и емкостную Ch составляющие. Емкость, в основном, определяется кожным покровом человека. На рисунке 1.1 показана эквивалентная схема сопротивления тела человека, по пути «рука – рука».

Zh. Rк - активная составляющая сопротивления кожи человека; Cк - емкостная составляющая сопротивления кожи человека; Rвн - сопротивление внутренних органов; Uh - приложенное напряжение. Сопротивление тела человека Zh сильно зависит от приложенного напряжения, что показано на рисунке 1.2.

Из рисунка видно, что при малых значениях напряжения (≈ 4В) сопротивление тела человека приблизительно равно 1МОм. При напряжениях 220-380 В сопротивление тела человека можно считать чисто активным и равным 1000 Ом. При напряжениях 500-700 В происходит пробой кожного покрова, сопротивление тела человека становится постоянным и равным сопротивлению внутренних органов (Rвн = 200-300 Ом).

37) Технические способы и средства защиты для обеспечения электробезопасности

Для обеспечения защиты от случайного прикосновения к токоведущим частям необходимо применять следующие способы и средства:

• защитные оболочки;

• защитные ограждения (временные или стационарные);

• безопасное расположение токоведущих частей;

Для защиты от случайного прикосновения к неизолированным токоведущим частям или приближения к ним на опасное расстояние они располагаются на недоступной высоте или в недоступном месте. Если эти части доступны для человека, они закрываются временными или стационарными, сплошными или сетчатыми ограждениями, обеспечивающими частичную защиту от прикосновения. Токоведущие части могут заключаться в оболочки (корпуса). При этой защите должны быть соблюдены все установленные правилами изоляционные расстояния между человеком, ограждением или оболочкой и токоведущими частями.

• изоляция токоведущих частей (рабочая, дополнительная, уси­ленная, двойная);

• изоляция рабочего места;

Различают следующие виды изоляции токоведущих частей: рабочая, дополнительная, усиленная, двойная.

Рабочая изоляция обеспечивает нормальную работу и защиту электроустановок от поражения электрическим током

Дополнительная изоляция предусмотрена наряду с рабочей для защиты от поражения электрическим током в случае повреждения рабочей изоляции.

Двойной называется изоляция, состоящая из рабочей и дополнительной. Материалы, используемые для рабочей и двойной изоляции имеют различные свойства, что делает маловероятным одновременное их повреждение.

Усиленная изоляция – это улучшенная рабочая изоляция, обеспечивающая такую же степень защиты, как двойная, но конструктивно выполненная так, что каждую из составляющих изоляции испытать нельзя.

Изоляция рабочего места предусматривает изоляцию пола, настила, площадки, металлических деталей в области рабочего места, потенциал которых отличается от потенциалов токоведущих частей, и прикосновение к которым является предусмотренным или возможным.

Изоляция нетоковедущих частей осуществляется путем покрытия частей изоляционными материалами (лаками, красками).

• малое напряжение;

Малое напряжение применяется для питания ручного электроинструмента, ручных светильников в помещениях особой и повышенной опасности и т.д. Малым называется номинальное напряжение не более 50 В переменного тока и не более 110 В постоянного тока.

• защитное отключение;

• предупредительная сигнализация, блокировка, знаки без­опасности.

Сигнализация (звуковая, световая) применяется в дополнение к другим средствам и способам защиты. Она предупреждает о наличии напряжения на электроустановке. Имеются устройства, сигнализирующие об опасности недопустимого приближения к токоведущим частям под напряжением.

Блокировка (механическая и электрическая) исключает доступ к токоведущим частям, пока с них не снято напряжение, либо обеспечивается автоматическое снятие напряжения при появлении возможности прикосновения или опасного приближения к токоведущим частям.

Маркировка – это надписи, буквенно-цифровые и цветовые обозначения элементов, устройств, проводов (например, нулевой защитный проводник должен иметь голубую расцветку), введенные для их легкого распознавания.

Плакаты и знаки безопасности относятся к электрозащитным средствам. По назначению делятся напредупреждающие («Стой  Напряжение », «Испытание. Опасно для жизни », «Не влезай. Убьет!»), запрещающие («Не включать. Работают люди», «Стой! Без средств защиты проход запрещен»), предписывающие («Работать здесь», «Влезать здесь»), указательные («Заземлено»). По характеру применения плакаты могут быть постоянные и переменные. Перечень, размеры, форма, места и условия применения плакатов и знаков безопасности регламентированы правилами применения.

4.2. Для обеспечения защиты от поражения электрическим то­ком при прикосновении к металлическим нетоковедущим частям, ко­торые могут оказаться под напряжением в результате повреждения изоляции, применяют следующие способы:

• защитное заземление;

Защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.

Защитное заземление эффективно в сетях напряжением до 1000 В с изолированной нейтралью (полюсом). Принцип действия защитного заземления заключается в том, что человек, касающийся корпуса оборудования, находящегося под напряжением за счет короткого замыкания фазы  на корпус, оказывается включенным параллельно заземлителю с сопротивлением защитного

• зануление;

В электроустановках напряжением до 1 кВ при использовании трех проводных сетей с заземленной нейтралью защитное заземление не обеспечивает защиты людей от поражения электрическим током (рисунок 3.12).

В этом случае при к.з. фазы на корпус ток  может оказаться недостаточным для срабатывания защиты (например, предохранителя) и человек, прикоснувшись к поврежденному корпусу, окажется под напряжением. Оно будет тем больше, чем больше . Следовательно, величину  необходимо уменьшать, что потребует громоздкого и дорогого заземляющего устройства. Поэтому в четырех проводных сетях с глухозаземленной нейтралью и нулевым проводом применяют зануление.

• выравнивание потенциала;

• защитное отключение;

• изоляция нетоковедущих частей;

• электрическое разделение сети;

• малое напряжение;

• контроль изоляции, компенсация токов замыкания на землю;

Контроль изоляции может быть периодическим, непрерывным и приемосдаточным. Поддержание сопротивления изоляции на высоком уровне уменьшает вероятность замыканий на землю, на корпус и поражение людей электрическим током.

В сети с изолированной нейтралью непрерывный контроль обязателен. Для этого используют метод трех вольтметров (рисунок 3.9).

Недостаток этого способа заключается в том, что при одновременном ухудшении состояния изоляции всех фаз в одинаковое количество раз этот метод не пригоден.

Периодическая проверка производится путем измерения сопротивления изоляции мегаомметром. Измеряется сопротивление изоляции каждой фазы относительно земли. В электроустановках напряжением до 1000 В оно должно быть не ниже 0,5 МОм. Более подробно материал разбирается на лабораторных занятиях.

• средства индивидуальной защиты.

СИЗ относятся к средствам защиты, используемых в электроустановках, служащих для защиты людей от поражения электрическим током, электрической дуги и электромагнитного поля. Изолирующие средства делятся на основные и дополнительные.

К основным в электроустановках напряжением свыше 1000 В относятся: электроизмерительные клещи, указатели напряжения для фазировки, изолирующие устройства и приспособления для работ на воздушных линиях с непосредственным прикосновением к токоведущим частям.

К дополнительным в электроустановках напряжением свыше 1000 В относятся: диэлектрические перчатки, боты, ковры; индивидуальные экранирующие комплекты; изолирующие подставки и накладки; переносные заземления; оградительные устройства; плакаты и знаки безопасности.

К основным в электроустановках напряжением до 1000 В относятся: изолирующие штанги; изолирующие и электроизмерительные клещи; указатели напряжения; диэлектрические перчатки; слесарно-монтажный инструмент с изолирующими рукоятками.

К дополнительным в электроустановках напряжением до 1000 В относятся: диэлектрические галоши и ковры; переносные заземления; изолирующие подставки и накладки; плакаты и знаки безопасности; оградительные устройства.

Средства защиты, кроме плакатов и знаков безопасности, диэлектрических ковров, изолирующих подставок, переносных заземлений и ограждений подвергаются эксплуатационным испытаниям: перчатки – 2 раза в год, галоши – 1 раз в год, боты – 1 раз в 3 года, указатели напряжения и инструмент с изолирующими рукоятками – 1 раз в год.

При работе на отключенных токоведущих частях для защиты от ошибочно поданного или наведенного напряжения применяют в качестве наиболее надежной защиты переносные заземления. При наложении заземления сначала заземление следует соединить с «землей», затем проверить отсутствие напряжения, после чего наложить на токоведущие части.

Технические способы и средства применяют раздельно или в сочетании друг с другом так, чтобы обеспечивалась оптимальная защита.