Добавил:
vinogradov-design.narod.ru к.ф.-м.н. http://nauchkor.ru/users/572f1d7d5f1be72184501535 Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

2019-RG-math-Vinogradov-translation

.pdf
Скачиваний:
4
Добавлен:
11.05.2019
Размер:
1.54 Mб
Скачать

11

where

e

A( x x0)

E A(x x0 ) A

2

(x x0 )

2

/ 2! A

3

(x x0 )

3

/ 3!... , where

E - is the unit

 

 

 

 

 

 

 

 

matrix.

The matrix exponent can still be called Cauchy’s matrix and can be written as:

 

 

 

 

 

 

 

 

 

 

 

 

K (x x0 )

K (x x0 ) e

A( x x0)

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then the solution of Cauchy’s problem can be written in the form:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y (x) K (x x0 )Y (x0 ) Y

 

(x x0 ) ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where Y

 

(x x0 ) e

Ax

 

e

At

F (t)dt

is the vector of a particular solution of an inhomogeneous

 

 

 

 

 

 

 

 

 

 

 

 

 

x0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

system of differential equations.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the theory of matrices [Gantmakher], the property of multiplication of matrix

exponentials (Cauchy’s matrices) is known:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K(x

i

x

0

) K(x

i

x

i 1

) K(x

i 1

x

i 2

) ... K(x

2

x ) K(x

x

0

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

1

 

 

In the case when the system of differential equations has a matrix with variable coefficients A A(x) , the solution of Cauchy’s problem is proposed, as is known, to be sought using the property of multiplication of Cauchy’s matrices. That is, the interval of integration is divided into small sections and in small parts Cauchy’s matrix approximately calculated by the formula for the constant matrix in the exponent. And then Cauchy’s matrices calculated on small sections are multiplied:

K(x

i

x

) K(x

i

x

i 1

) K(x

i 1

x

i 2

) ... K(x

2

x )

 

0

 

 

 

 

 

1

where Cauchy’s matrices are approximately computed by the formula:

K (x

i 1

x

) e A( xi ) xi exp( A(x

) x

) , где x

i

x

i 1

 

 

i

i

i

 

 

 

K(x1

xi .

x

0

)

 

 

,

12

Chapter 2. Improvement of S.K.Godunov’s method of orthogonal sweep for solving boundary value problems with stiff ordinary differential equations.

2.1. The formula for the beginning of the calculation by S.K.Godunov’s sweep method.

Let us consider S.K.Godunov’s sweep method problem.

Suppose that we consider the shell of the rocket. This is a thin-walled tube. Then

system of linear ordinary differential equations will be of the 8th order, the

matrix

A

coefficients will have the dimension 8x8, the required vector-function Y (x)

will have

the of the

dimension 8x1, and the matrices of the boundary conditions will be rectangular horizontal dimensions 4x8.

Then in S.K.Godunov’s method for such a problem the solution is sought in the following form [Godunov]:

Y (x) Y1 (x)c1 Y2 (x)c2 Y3 (x)c3 Y4 (x)c4 Y (x) ,

or it can be written in the matrix form:

Y (x) Y

матрица

 

(x)c

Y

 

(x)

 

,

where vectors

Y

(x),Y

(x),Y

(x),Y

(x)

1

2

3

4

 

are linearly independent vector-solutions of the

homogeneous system of differential equations, and the vector

solution of the inhomogeneous system of differential equations.

Y

 

(x)

 

is a vector of a particular

Here Yматрица (x) Y1 (x),Y2 (x),Y3 (x),Y4 (x) is the matrix of dimension 8x4, and

c

is

the corresponding vector of dimension 4x1 with the required constants c1 , c2 , c3 , c4 .

But in general, the solution for such a boundary-value problem with dimension 8 (outside the framework of S.K.Godunov's method) can consist not of 4 linearly independent vectors

Y1 (x),Y2 (x),Y3 (x),Y4 (x) , but entirely of all 8 linearly independent solution vectors of the

homogeneous system of differential equations:

13

Y(x) Y1 (x)c1 Y2 (x)c2 Y3 (x)c3 Y4 (x)c4

Y5 (x)c5 Y6 (x)c6 Y7 (x)c7 Y8 (x)c8 Y (x).

And just the difficulty and problem of S.K.Godunov’s method is that the solution is sought with only half the possible vectors and constants, and the problem is that such a solution with half the constants must satisfy the conditions on the left edge (the starting edge for the sweep) for all possible values of the constants, in order to find these constants from the

conditions on the right edge.

 

 

 

 

 

That is,

in S.K.Godunov’s method, there is a

problem of finding such initial values

Y1 (0),Y2 (0),Y3

(0),Y4 (0),Y

 

(0)

of the vectors Y1 (x),Y2

(x),Y3 (x),Y4 (x),Y

 

(x) , so that you can

 

 

start the run from the left edge

x = 0, that is, that the conditions UY (0) u on the left edge are

satisfied for any values of the constants c1 , c2 , c3 , c4 .

Usually this difficulty is "overcome" by the fact that differential equations are written not through functionals, but through physical parameters and consider the simplest conditions on the

simplest physical parameters so that the initial values

Y

(0),Y

 

(0),Y

 

(0),Y

 

(0),Y

 

(0)

2

3

4

 

1

 

 

 

 

 

 

can be

guessed. That is, problems with complex boundary conditions can not be solved in this way: for example, problems with elastic conditions at the edges.

Below we propose a formula for the initiation of computations by S.K.Godunov’s method.

We perform the line orthonormalization of the matrix equation of the boundary conditions on the left edge:

UY (0) u , where the matrix U is rectangular and horizontal dimension 4x8.

As a result, we obtain an equivalent equation of boundary conditions on the left edge, but already with a rectangular horizontal matrix U орто of dimension 4x8, which will have 4 orthonormal rows:

14

U

Y (0) u

орто

 

орто

,

where, as a result of orthonormalization of the matrix

U

, the vector

u

is transformed into the

vector

u

орто

 

.

How to perform line orthonormation of systems of linear algebraic equations can be found in [Berezin, Zhidkov].

We complete the rectangular horizontal matrix U орто to a square non-degenerate matrix

W :

W

 

U

орто

 

M

 

,

where a matrix M

of dimension 4х8 must complete the matrix

U

орто

 

to a non-degenerate square

matrix W of dimension 8х8.

As matrix M rows, we can take those boundary conditions, that is, expressions of those physical parameters that do not enter the parameters of the left edge or are linearly independent with them. This is quite possible, since for boundary value problems there are as many linearly independent physical parameters as the dimensionality of the problem, that is, in this case there are 8 of them, and if 4 are given on the left edge, then 4 can be taken from the right edge.

We complete the orthonormalization of the constructed matrix W , that is, we perform the

line orthonormalization and obtain a matrix

Wорто

of dimension 8x8 with orthonormal rows:

W

 

 

U

орто

M

 

 

 

 

 

орто орто

.

We can write down that

Y

матрица

(0) (M

орто

)

транспонированная

 

 

 

 

 

M

T

орто

 

.

Then, substituting in the formula of S.K. Godunov’s method, we get:

Y (0) Yматрица (0)c Y (0)

15

or

Y (0) M

T

 

(0) .

ортоc Y

 

We substitute this last formula into the boundary conditions

U

Y (0) u

орто

 

орто

and

obtain:

U

 

[M

T

c Y

 

(0)]

u

орто

орто

 

 

 

 

 

 

орто

.

From this, we obtain that on the left-hand side the constants

c

no longer influence

anything, since

U

 

M

T

орто

орто

 

 

0

and it remains only to find the vector

Y

 

(0)

 

from the

expression:

U

Y

 

(0)

 

 

орто

 

 

uорто

.

But the matrix

U

орто

 

has a dimension of 4x8 and it must be supplemented to a square

non-degenerate one in order to find the vector

system of linear algebraic equations:

Y

 

(0)

 

from the solution of the corresponding

U M

орто

Y

 

(0)

 

 

орто

 

 

 

 

u

орто

 

 

0

 

 

,

where 0 is any vector, including a vector of zeros. Hence we obtain by means of the inverse matrix:

 

(0)

 

U

 

Y

M

 

 

 

 

 

 

 

1 орто

орто

u

орто

 

 

0

.

Then the formula for starting the computation by S.K. Godunov's method is as follows:

Y (0) M

T

орто

 

c

U

M

 

1 орто

орто

u

орто

 

 

0

.

From the theory of matrices [Gantmakher] it is known that if the matrix is orthonormal, then its inverse matrix is its transposed matrix. Then the last formula takes the form:

16

 

 

 

U

T

Y (0) M

T

c

орто

 

орто

M

 

 

 

 

 

 

 

орто

 

 

 

 

u

орто

 

 

0

,

Y (0) M

T

c U

T

M

T

орто

орто

орто

 

 

 

uорто 0

,

Y (0) M

T

c U

T

u

орто

орто

 

 

орто

M

T

0

орто

 

 

,

Y (0)

M

T

c

 

 

орто

U

T

u

 

 

 

орто

орто

.

The column vectors of the matrix

M

T

орто

 

and the vertical convolution vector

U

T

u

орто

 

орто

are linearly independent and satisfy the boundary condition

UY (0)

u

.

2.2. The second algorithm for the beginning of the calculation by S.K.Godunov’s sweep

method.

 

This algorithm requires the addition of a matrix of boundary conditions

U to a square

non-degenerate one:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The initial values Y

1

(0),Y

2

(0),Y

3

(0),Y

4

(0),Y

(0)

are

found from the

solution of the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

following systems of linear algebraic equations:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

Y

 

(0)

 

u

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

0

0

 

0

 

 

 

 

 

 

U

Y

 

(0)

0

, где i 0

, 1

, 0

, 0

,

 

 

 

 

 

 

i

 

 

 

 

 

 

M

 

 

 

 

i

 

 

 

 

 

 

0

0

1

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

 

1

 

 

where

0 is a vector of zeros of dimension 4х1.

 

 

 

 

 

 

 

 

 

 

 

17

The column vectors Yi

(0)

and the column vector Y

 

(0)

are linearly independent and,

 

taking part in the formation of the vector Y (0)

, satisfy the boundary condition UY (0) u .

2.3.The replacement of the Runge-Kutta’s numerical integration method in

S.K.Godunov’s sweep method.

In S.K.Godunov's method, as shown above, the solution is sought in the form:

Y (x) Y

матрица

 

(x)c

Y

 

(x)

 

.

At each specific section of S.K.Godunov's method of sweeping between points of orthogonalization one can use the theory of matrices instead of Runge-Kutta’s method and perform the calculation through Cauchy’s matrix:

Y

матрица

(x

j

) K (x

j

x

)Y

матрица

 

 

 

i

 

(x

i

 

)

.

So perform calculations faster, especially for differential equations with constant coefficients, since in the case of constant coefficients it is sufficient to calculate once Cauchy’s matrix in a small section and then only multiply by this once computed Cauchy’s matrix.

Similarly, through the theory of matrices, we can also calculate the vector Y (x) of a

particular solution of an inhomogeneous system of differential equations. Or, for this vector, Runge-Kutta’s method can be used separately, that is, one can combine the theory of matrices and Runge-Kutta’s method.

2.4 Matrix-block realizations of algorithms for starting calculation by S.K.Godunov’s

sweep method.

We consider a system of linear algebraic equations expressing the boundary conditions

for x=0

UY (0) u

18

Suppose that there is a constructed quadratic nondegenerate matrix G

U

.

 

 

U *

Similarly, we write a vector g

u

 

u*

where the introduced vector

u

*

 

is unknown.

We write the system of linear algebraic equations

GY (0) g

or in block form

U

Y (0)

 

u

U

*

u

*

 

 

 

 

 

 

It follows that

 

U

1

u

 

Y (0)

 

G

U

*

 

u

*

 

 

 

 

 

 

 

 

Imagine

N

T

T

*

.

 

 

 

 

 

 

 

Then

.

1

g

 

Ng

.

 

U

1

u

 

 

 

 

 

Y (0)

 

G

1

g Ng T

T

*

 

 

 

 

 

U

*

 

u

*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u

u

*

 

Tu T

*

u

*

 

 

.

At the same time, we remember that the solution of the boundary value problem is sought in the form

Y (x) Y

матрица

 

(x)c

Y

(x)

.

Comparing

Y (0) T *u* Tu and

Y (0) Y

матрица

(0)c Y (0)

 

 

 

 

 

 

given that here the vector of unknown constants is

u* c , we obtain the initial values of the

vectors for the beginning of integration in S.K.Godunov’s method.:

Y

матрица

(0) T

и

Y (0) Tu .

 

 

 

 

 

 

 

Another matrix derivation can be stated in the following form.

19

We transform the system

U

Y (0)

 

u

U

*

u

*

 

 

 

 

 

 

by line orthonormalization to an equivalent system with orthonormal rows

W

Y (0)

 

w

.

W

*

w

*

 

 

 

 

 

 

 

 

 

 

Then we can write

 

W

1

w

 

W

T

w

 

 

 

 

Y (0)

 

 

 

W

T

W

*T

 

 

 

 

 

 

 

 

 

 

W

*

 

w

*

W

*

 

w

*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Making a comparison of two expressions:

w

w

*

 

W

T

w

 

 

W

*T

w

*

 

 

.

and from what

c w *

Y (0) Y

 

 

 

(0)c Y

 

(0)

матрица

 

 

 

 

 

 

 

 

 

Y (0) W

*T

w

*

W

T

w

 

 

 

is a vector of unknown constants, we get:

Y

 

(0) W

T

матрица

 

 

 

 

и

Y

 

(0)

 

W

T

w

 

 

.

Note that another matrix-block derivation of the formulas is possible. Transition from the system

U

Y (0)

 

u

U

*

u

*

 

 

 

 

 

 

to the system

W

Y (0)

 

w

W

*

w

*

 

 

 

 

 

 

can be realized by another method, replacing the line orthonormation of

GY (0) g

following orthonormal decomposition of the matrix G

 

GT JL

 

where the matrix J has orthonormal columns, and the matrix L is upper triangular.

by the

20

Then, taking into account the rule of transposition of matrices, we can write

As a result, we get

GY (0)

Here the rows of the matrix Comparing

T

J

T

G L

.

 

 

g

 

T

T

Y (0)

g

 

J

T

Y (0)

,

L J

 

,

 

 

 

 

 

 

 

 

 

are orthonormal.

W

Y (0)

 

w

W

*

w

*

 

 

 

 

 

 

and

T

)

1

g

(L

 

.

we get

W

J

 

 

 

T

 

W

*

 

,

 

 

 

 

 

J

T

T

)

1

g

 

Y (0) (L

 

w

T

)

1

T

)

1

w

*

(L

 

g (L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u

u

*

 

.

Thus, we again obtain the orthonormal initial values of the unknown vector-valued functions of the solution.

2.5. Conjugation of parts of the integration interval for S.K.Godunov’s sweep method.

To automate the computational process on the entire integration interval, which is composed for conjugate shells with different physical and geometric parameters, the deformation of which is described by different functions, it is necessary to have the procedures of conjugation of the corresponding functions.

In the general case, the resolving functions of various parts of the integration interval of the problem have no physical meaning, and the physical parameters of the problem are expressed in various ways through these functions and their derivatives. At the same time, conjugation of adjacent sections must satisfy kinematic and force conditions at the point of conjugation.

Соседние файлы в предмете Численные методы