
- •Глава 1.4. Свойства токсиканта, определяющие токсичность
- •1. Размеры молекулы
- •2. Геометрия молекулы токсиканта
- •4. Стабильность в среде
- •5. Химические свойства.
- •5.1. Типы химических связей, образующихся между токсикантами и молекулами-мишенями организма
- •Глава 4.1. Общие закономерности
- •В ходе поступления, распределения, выведения вещества осуществляются процессы его перемешивания (конвекция), растворения в биосредах, диффузии, осмоса, фильтрации через биологические барьеры.
- •Свойства организма, влияющие на токсикокинетику ксенобиотиков.
- •1. Растворение и конвекция
- •2. Диффузия в физиологической среде
- •2.1. Проникновение веществ через биологические барьеры
- •2.2. Диффузия веществ через липидные мембраны
- •2.3. Диффузия через поры
- •2.4. Межклеточный транспорт химических веществ
- •3. Осмос
- •4. Фильтрация
- •5. Специфический транспорт веществ через биологические барьеры
- •5.1. Активный транспорт
- •1.3. Проникновение через клеточную мембрану
- •1.4. Относительная растворимость в системе масло/вода
- •1.5. Распределение в соответствии с химическим сродством
- •2. Объем распределения
- •3.2. Характеристики связывания ксенобиотиков
- •3.3. Конкурентные отношения при взаимодействии ксенобиотиков с белками
- •5.1.1. Некоторые свойства гематоэнцефалического и гематоликворного барьеров
- •6. Гематоофтальмический барьер
- •7.2. Активный транспорт
- •7.3. Мембранная диффузия
- •7.4. Фагоцитоз
- •8. Поступление ксенобиотиков в экзокринные железы
- •9.2. Характеристика проникновения токсикантов через плаценту и распределение их в тканях плода
- •10. Депонирование
- •10.1. Депонирование вследствие химического сродства и растворимости в липидах
- •10.2. Депонирование вследствие активного захвата ксенобиотика
- •1. Концепция l и ll фазы метаболизма ксенобиотиков
- •2. Локализация процессов биотрансформации
- •3.1.1.1.1. Реакции, катализируемые цитохромомР-450
- •Эпоксидирование и гидроксилирование ароматических соединений.
- •3.1.1.2. Флавинсодержащие монооксигеназы (фмо)
- •3.1.2. Простогландинсинтетаза-гидропероксидаза и другие пероксидазы
- •3.1.3. Дегидрогеназы
- •3.1.4. Флавопротеинредуктазы
- •4.1. Ацетилирование
- •4.2. Другие реакции ацилирования
- •4.3. Конъюгация с глюкуроновой кислотой
- •4.4. Конъюгация с сульфатом
- •4.5. Конъюгация с глутатионом и цистеином
- •6. Факторы, влияющие на метаболизм ксенобиотиков
- •6.1. Генетические факторы
- •6.2. Пол и возраст
- •6.3.1.1. Индукторы метаболизма
- •6.3.1.2. Механизмы индукции
- •6.3.1.3. Влияние индукторов на токсичность ксенобиотиков
- •6.3.2. Угнетение активности энзимов
- •8.1. Основы экотоксикологии
- •1. Ксенобиотический профиль среды
- •2.2. Персистирование
- •2.3.2. Биотическая трансформация
- •2.4. Процессы элиминации, не связанные с разрушением
- •2.5. Биоаккумуляция
- •2.5.1. Факторы, влияющие на биоаккумуляцию
- •2.5.2. Значение биоаккумуляции
- •2.6. Биомагнификация
- •3.2. Экотоксичность
- •3.2.1. Острая экотоксичность
- •3.2.2. Хроническая экотоксичность
- •5.1.2. Полихлорированные бифенилы (пхб)
- •5.1.3. Хлорированные бензолы (хб)
4.1. Ацетилирование
Аминогруппы ароматических соединений часто подвергаются ацетилированию. Уксусная кислота переносится на аминогруппу в форме ацетил-КоА с помощью соответствующих трансфераз, в частности - ацетил-КоА:амин-N-ацетилтрансферазы.
Ацетилированию могут подвергаться ариламингруппы, сульфамидные группы, алифатические амины, группы гидразина. У людей выражены генетически обусловленные различия в способности к реакции N-ацетилирования. Замедленное ацетилирование отмечается у гомозиготных по рецессивному аллелю индивидов. Высокая активность ацетилирования отмечается у гетерозиготных индивидов или людей, гомозиготных по доминантному аллелю.
4.2. Другие реакции ацилирования
Не только уксусная кислота, но и другие органические кислоты способны превращаться в организме в активную форму, вступая во взаимодействие с КоА (жирные кислоты, карболовая кислота, бензойная кислота, фенилуксусная кислота и др.). В этой форме вещества вступают в реакцию взаимодействия с соединениями, содержащими аминогруппу (глицином, глутаматом), с образованием конъюгатов. Так, известно, что при поступлении в организм бензойной кислоты с мочой выделяется гиппуровая кислота. Гиппуровая кислота представляет собой конъюгат бензойной кислоты с глицином. В данном случае эндогенная молекула глицина выступает в качестве акцептора, с которым связывается бензойная кислота, активированная КоА. В организме человека активированная форма фенилуксусной кислоты связывается с глутаматом.
4.3. Конъюгация с глюкуроновой кислотой
Глюкуроновая кислота (рисунок 11) имеет большое значение в механизме биотрансформации ксенобиотиков.
Рисунок 11. Глюкуроновая кислота
Она активно присоединяется к молекулам алифатических и ароматических спиртов, органических кислот, серосодаржащих соединений. Процесс конъюгации приводит к образованию эфиров глюкуроновой кислоты - глюкуронидов.
В реакцию конъюгации глюкуроновая кислота вступает в активной форме уридиндифосфоглюкуроновой кислоты (УДФГК) и переносится на молекулу-акцептор с помощью соответствующей трансферазы: УДФ-глюкуронозилтрансферазы (УДФ-ГТ). Энзим идентифицирован в микросомальной фракции клеток печени, почек, других органов. УДФГК образуется в процессе взаимодействия глюкозо-1-фосфата с уридинтрифосфорной кислотой (УТФ) в растворимой фракции цитозоля клеток. УДФ-ГТ индуцируется при поступлении в организм таких веществ, как фенобарбитал, ПАУ, диоксины, полигалогенированные бифенилы.
Примеры типов реакции глюкуронидирования представлены на рисунке 12.
Рисунок 12. Некоторые реакции глюкуронидирования ксенобиотиков
С помощью конъюгации с глюкуроновой кислотой метаболизируют и некоторые эндогенные вещества, например стероиды и билирубин.
В кишечнике под влиянием глюкуронидазы, энзима кишечной микрофлоры, глюкурониды могут расщепляться с образованием веществ, способных к реабсорбции и обратному поступлению в кровь (явление кишечно-печеночной циркуляции ксенобиотика).
4.4. Конъюгация с сульфатом
Различные соединения, содержащие фенольные группы выделяются из организма в виде конъюгатов с сульфатом. Эндогенные сульфаты могут взаимодействовать также с ароматическими аминами. Процесс взаимодействия проходит в несколько этапов. На первом этапе образуется активная форма сульфата - 3-фосфоаденазин-S-фосфосульфат (ФАФС). Перенос сульфогруппы на молекулу-акцептор (фенол, стероиды и др.) осуществляется с помощью энзима сульфотрансферазы:
В зависимости от строения молекулы-акцептора в процесс вовлекаются различные сульфотрансферазы. Энзимы не индуцируются ксенобиотиками. Их активность может быть угнетена пентахлорфенолом, 2,6-дихлор-4-нитрофенолом. Сульфотрансферазы обладают относительно высокой субстратной специфичностью. Система конъюгации сульфата локализуется главным образом в цитозольнй фракции гепатоцитов. Запасы ФАФС в печени незнечительны, легко истощаются, что при высоких токсических нагрузках приводит к переключению метаболизма на другие пути, в частности в сторону образования продуктов глюкуронидирования. Сульфатация, таким образом, является системой с "высоким сродством, но малой мощностью", глюкуронидирование, напротив - с "малым сродством, но высокой мощностью".