
- •Глава 1.4. Свойства токсиканта, определяющие токсичность
- •1. Размеры молекулы
- •2. Геометрия молекулы токсиканта
- •4. Стабильность в среде
- •5. Химические свойства.
- •5.1. Типы химических связей, образующихся между токсикантами и молекулами-мишенями организма
- •Глава 4.1. Общие закономерности
- •В ходе поступления, распределения, выведения вещества осуществляются процессы его перемешивания (конвекция), растворения в биосредах, диффузии, осмоса, фильтрации через биологические барьеры.
- •Свойства организма, влияющие на токсикокинетику ксенобиотиков.
- •1. Растворение и конвекция
- •2. Диффузия в физиологической среде
- •2.1. Проникновение веществ через биологические барьеры
- •2.2. Диффузия веществ через липидные мембраны
- •2.3. Диффузия через поры
- •2.4. Межклеточный транспорт химических веществ
- •3. Осмос
- •4. Фильтрация
- •5. Специфический транспорт веществ через биологические барьеры
- •5.1. Активный транспорт
- •1.3. Проникновение через клеточную мембрану
- •1.4. Относительная растворимость в системе масло/вода
- •1.5. Распределение в соответствии с химическим сродством
- •2. Объем распределения
- •3.2. Характеристики связывания ксенобиотиков
- •3.3. Конкурентные отношения при взаимодействии ксенобиотиков с белками
- •5.1.1. Некоторые свойства гематоэнцефалического и гематоликворного барьеров
- •6. Гематоофтальмический барьер
- •7.2. Активный транспорт
- •7.3. Мембранная диффузия
- •7.4. Фагоцитоз
- •8. Поступление ксенобиотиков в экзокринные железы
- •9.2. Характеристика проникновения токсикантов через плаценту и распределение их в тканях плода
- •10. Депонирование
- •10.1. Депонирование вследствие химического сродства и растворимости в липидах
- •10.2. Депонирование вследствие активного захвата ксенобиотика
- •1. Концепция l и ll фазы метаболизма ксенобиотиков
- •2. Локализация процессов биотрансформации
- •3.1.1.1.1. Реакции, катализируемые цитохромомР-450
- •Эпоксидирование и гидроксилирование ароматических соединений.
- •3.1.1.2. Флавинсодержащие монооксигеназы (фмо)
- •3.1.2. Простогландинсинтетаза-гидропероксидаза и другие пероксидазы
- •3.1.3. Дегидрогеназы
- •3.1.4. Флавопротеинредуктазы
- •4.1. Ацетилирование
- •4.2. Другие реакции ацилирования
- •4.3. Конъюгация с глюкуроновой кислотой
- •4.4. Конъюгация с сульфатом
- •4.5. Конъюгация с глутатионом и цистеином
- •6. Факторы, влияющие на метаболизм ксенобиотиков
- •6.1. Генетические факторы
- •6.2. Пол и возраст
- •6.3.1.1. Индукторы метаболизма
- •6.3.1.2. Механизмы индукции
- •6.3.1.3. Влияние индукторов на токсичность ксенобиотиков
- •6.3.2. Угнетение активности энзимов
- •8.1. Основы экотоксикологии
- •1. Ксенобиотический профиль среды
- •2.2. Персистирование
- •2.3.2. Биотическая трансформация
- •2.4. Процессы элиминации, не связанные с разрушением
- •2.5. Биоаккумуляция
- •2.5.1. Факторы, влияющие на биоаккумуляцию
- •2.5.2. Значение биоаккумуляции
- •2.6. Биомагнификация
- •3.2. Экотоксичность
- •3.2.1. Острая экотоксичность
- •3.2.2. Хроническая экотоксичность
- •5.1.2. Полихлорированные бифенилы (пхб)
- •5.1.3. Хлорированные бензолы (хб)
. КУЦЕНКО ОСНОВЫ ТОКСИКОЛОГИИ, Санкт-Петербург, 2002
Глава 1.4. Свойства токсиканта, определяющие токсичность
Токсичность разных веществ не одинакова. Поскольку она проявляется во взаимодействии ксенобиотика с биологической системой, её величина зависит от свойств как токсиканта, так и биосистемы и в конечном итоге определяется:
1. Способностью вещества достичь структуры-мишени, взаимодействие с которой инициирует токсический процесс;
2. Характером и прочностью связи, образующейся между токсикантом и структурой-мишенью;
3. Значением структуры-мишени для поддержания гомеостаза в организме.
Строение биологических систем, особенности их морфо-функциональной организации в значительной степени неизменны в масштабах исторически обозримого времени. В этой связи, поскольку вещество обладает вполне определенными свойствами, оно оказывает на организм (биологическую систему) воспроизводимый с известным постоянством эффект. Изменение свойств действующего фактора (воздействие другим веществом) будет сопровождаться качественными и/или количественными изменениями развивающихся эффектов. Важнейшим принципом токсикологии является зависимость качественных и количественных характеристик развивающегося токсического процесса от строения действующего вещества.
Строение вещества определяет размеры молекулы, её массу, растворимость, летучесть, агрегатное состояние при нормальных условиях и химическую активность. Все эти свойства влияют на токсичность вещества, вместе с тем, ни одно из них не является единственно значимым.
1. Размеры молекулы
Размеры молекулы токсиканта оказывают влияние на его биологическую активность в силу ряда причин:
а). С увеличением молекулярной массы затрудняется процесс поступления токсиканта в организм и распределения его в органах и тканях.
Низкомолекулярные, инертные в химическом отношении вещества в виде газа или в форме раствора, как правило, легко проникают в кровь через лёгкие, желудочно-кишечный тракт, иногда и кожу, быстро распределяются в тканях, проходя через гистогематические барьеры. Однако уже для низкомолекулярных соединений способность проникать через барьеры во многом определяется растворимостью. Гидрофильные молекулы даже с молекулярной массой 50 - 100 Д обладают ограниченной способностью проникать, например, через слизистые оболочки.
Для высокомолекулярных соединений процесс прохождения через барьерные структуры, как правило, затруднен. С другой стороны липофильные вещества, порой, не смотря на большие размеры молекул, относительно легко проходят через биологические барьеры. Большие молекулы веществ плохо растворимых в воде и липидах (искусственные и естественные полимеры) практически не проникают во внутренние среды организма и, следовательно, не обладают общетоксическим действием.
б). С увеличением молекулярной массы увеличивается число возможных изомерных форм молекулы токсиканта и, одновременно, возрастает специфичность их действия.
Поскольку структуры организма, вступающие во взаимодействие с токсикантом, в большинстве случаев имеют вполне определённую пространственную организацию, активность действующего вещества существенно зависит от его конформации. Чем больше молекула, тем отчетливее выступает эта зависимость. Так, низкомолекулярные предельные углеводороды и некоторые их производные действуют практически неспецифично, причем, как на одноклеточные, так и на сложно организованные многоклеточные организмы. Малые размеры этих молекул обусловливают ограниченное количество их изомерных форм, а следовательно увеличивают количество участков их неспецифического связывания в организме.
С увеличением размеров молекул веществ возрастает число токсикантов, имеющих одинаковую массу и близкое строение, но обладающих совершенно различной токсичностью. Так, из более чем 100 изомеров тетрахлор-пара-дибензодиоксина, высокой токсичностью обладает лишь один: 2,3,7,8-тетрахлор-пара-дибензодиоксин.
Для группы высокомолекулярных веществ (полимеры), однако, также достаточно характерно неспецифическое действие. Оно может быть обусловлено, например, модификацией коллоидно-осмотического давления крови.
в). С увеличением размеров молекулы возрастает вероятность взаимодействия токсикантов с биосубстратом за счет сил Ван-дер-Ваальса (см. ниже).
Чем больше размеры молекулы, тем большее число атомов токсиканта контактирует с участком его связывания, тем прочнее формирующаяся при этом связь. Поскольку большие молекулы обладают известной "гибкостью", это в ещё большей степени способствует "прижиманию" лиганда к рецептору, то есть увеличению его афинности. В основном за счет сил Ван-дер-Ваальса нейромедиаторы, гормоны (и другие эндогенные биорегуляторы) взаимодействуют с рецепторным аппаратом клеток, органов, тканей. Однако силы эти, как правило, не велики и сразу после воздействия происходит диссоциация комплекса биорегулятор-рецептор. Отдельные токсиканты, напоминающие строением эндогенные биологически активные вещества, также вступают во взаимодействие с рецепторами, имитируя (агонисты) их эффекты. Такой механизм лежит в основе токсического действия многих алкалоидов (никотина, анабазина и др.), гликозидов, синтетических токсикантов и т.д. Если токсикант имеет существенно большие размеры, чем естественный агонист, то за счет сил Ван-дер-Ваальса осуществляется его прочная фиксация на рецепторе. Это приводит к экранированию рецепторов от действия агонистов, их блоку (антагонисты). Так действуют, например, атропин и курарин на, соответственно, М- и Н-холинорецепторы, ДЛК - на рецепторы серотонина, и т.д. Среди токсичных веществ значительно большее число является антагонистами соответствующих молекул-биорегуляторов.