
- •Л.В.Шишмина сбор и подготовка продукции нефтяных скважин
- •IV курс
- •Содержание
- •Введение
- •Водонефтяные эмульсии. Образование. Устойчивость. Физико-химические свойства. Методы разрушения
- •1.1. Причины образования водонефтяных эмульсий
- •Поверхностное натяжение
- •Типы эмульсий
- •1.2. Физико-химические свойства нефтяных эмульсий
- •Факторы, влияющие на устойчивость эмульсий
- •Старение эмульсий
- •1.3. Методы разрушения нефтяных эмульсий
- •Химические методы
- •Деэмульгирование под действием электрического поля
- •Факторы, влияющие на отстой в электрическом поле
- •Электродегидратор
- •Механические методы
- •Отстаивание
- •Центрифугирование
- •Фильтрация
- •2 Сбор и внутрипромысловый транспорт скважинной продукции
- •2.1. Системы сбора и транспорта нефти и газа
- •Последняя схема применяется при большом числе скважин, подключенных к комплексному сборному пункту (ксп).
- •2.2. Системы сбора продукции скважин в западной сибири
- •2.3. Принципиальная схема сбора и подготовки нефти, газа и воды
- •2.4 Унифицированные технологические схемы комплексов сбора и подготовки нефти, газа и воды
- •3. Установки для измерения продукции скважин
- •4. Предварительное разделение продукции скважин
- •4.1. Сепарация нефти от газа
- •Назначение, классификация и конструкции сепараторов
- •Принципиальное устройство сепараторов
- •Расчет гравитационного сепаратора на пропускную способность по газу и жидкости Расчет количества газа, выделившегося по ступеням сепарации
- •Расчет вертикального гравитационного сепаратора по газу
- •Расчет вертикального гравитационного сепаратора по жидкости
- •Расчет горизонтального сепаратора по газу
- •Эффективность процесса сепарации нефти от газа
- •Оптимальное давление и число ступеней сепарации нефти
- •4.2. Расчеты фазовых равновесий нефти и газа
- •4.3. Предварительный сброс пластовой воды
- •Разрушение эмульсий
- •Аппараты для предварительного сброса воды
- •5 Технологические расчеты промысловых трубопроводов
- •5.1. Классификации трубопроводов
- •Основные принципы проектирования трубопроводов
- •5.2 Гидравлический расчет простых напорных трубопроводов
- •Определение потерь напора на трение
- •Из (5.11) следует, что
- •Если учесть, что
- •Определение потерь напора на местные сопротивления
- •5.3. Графоаналитический способ решения задач
- •5.4 Гидравлические расчеты сложных трубопроводов
- •Гидравлический расчет трубопровода I категории
- •Гидравлический расчет трубопровода II категории
- •Гидравлический расчет трубопровода III категории
- •5.5. Увеличение пропускной способности трубопровода
- •5.6 Расчет оптимального диаметра трубопровода
- •5.7. Расчет трубопроводов при неизотермическом движении однофазной жидкости
- •5.8. Структуры газожидкостного потока в горизонтальных и наклонных трубопроводах
- •5.9. Газопроводы для сбора нефтяного газа
- •5.10 Расчет простого газопровода
- •Гидравлический расчет
- •Изменение температуры газа по длине газопровода
- •Изменение давления по длине газопровода
- •5.11 Расчет сложного газопровода
- •6 Осложнения при эксплуатации промысловых трубопроводов
- •6.1. Внутренняя коррозия трубопроводов
- •6.1.1. Теоретические основы электрохимической коррозии металлов
- •Факторы коррозионного разрушения трубопроводов
- •1. Температура и рН воды
- •Минерализация воды
- •6.1.2 Способы защиты трубопроводов от внутренней коррозии
- •Механические способы защиты
- •Технологическая защита трубопроводов
- •Химическая защита трубопроводов
- •6.1.3. Особенности внутренней коррозии трубопроводов в условиях западной сибири
- •6.2. Защита трубопроводов от внешней коррозии
- •6.3. Причины и механизм образования парафиновых отложений в трубопроводах
- •6.3.1. Состав парафиновых отложений
- •6.3.2. Факторы, влияющие на образование парафиновых отложений
- •Также имеет значение:
- •6.3.3. Температурный режим трубопроводов системы промыслового сбора нефти
- •6.3.4. Химические методы борьбы с отложениями парафина
- •6.3.5. Предотвращение отложений парафина с помощью магнитного поля
- •6 Рис.6.7. Схема установки магнитоактиватора на трубопроводе 1-магнитоактиватор; 2,3-задвижки; 4-устройство с образцами-свидетелями; 5-трубопровод .4. Осложнения за счет выпадения солей
- •Методы борьбы с отложениями солей
- •6.5. Образование жидкостных и гидратных пробок в газопроводах
- •6.5.1. Газовые гидраты: структура, состав, свойства
- •Элементарные ячейки гидрата: а — структуры I, б — структуры II
- •6.5.2. Условия образования газовых гидратов
- •6.5.3. Определение места образования гидратов
- •6.5.4. Предупреждение образования и ликвидация гидратов
- •7. Подготовка нефти на промыслах
- •7.1. Технологические схемы процессов обезвоживания и обессоливания нефти
- •7.2. Технологические схемы стабилизации нефти
- •7.3. Оборудование установок стабилизации нефти
- •8. Подготовка воды для системы поддержания пластового давления.
- •8.1. Требования к воде, закачиваемой в пласт
- •8.2. Технологические схемы установок по подготовке сточных вод для заводнения нефтяных пластов
- •Техническая характеристика коалесцирующего фильтра-отстойника типа фж-2973
- •9. Процессы подготовки нефтяного газа. Технологические схемы
- •9.1 Способы осушки нефтяного газа
- •9.2. Отбензинивание нефтяного газа
- •Выделение из нефтяного газа пропан-бутанов на абсорбционных установках
- •Компрессионный способ извлечения жидких углеводородов из нефтяного газа
- •9.3. Осушка газа жидкими сорбентами
- •9.4. Очистка газа от сероводорода и углекислоты Аминовая очистка газа
- •Очистка гидроокисью железа
- •9.5 Типовые схемы установок подготовки нефтяных газов
- •Список использованной литературы
5.9. Газопроводы для сбора нефтяного газа
Д
Рис.5.7.
Системы сбора газа на промыслах а)
индивидуальная; б) групповая; в)
централизованная
При самотечной системе сбора нефти с индивидуальным замерно-сепарационным оборудованием газовые линии берут свое начало у сепараторов, т.е. у устьев скважин. При герметизированной напорной системе нефтегазосбора начало газовых линий перемещается к групповым замерным установкам, или к ДНС, или к установкам подготовки нефти и протяженность газовых линий на месторождениях резко сокращается.
Существующие системы сбора природного газа классифицируются:
по степени централизации технологических объектов подготовки газа;
по конфигурации трубопроводных коммуникаций;
по рабочему давлению.
По рабочему давлению системы сбора газа делятся на вакуумные (Р < 0,1 МПа), низкого давления (0,1 < Р < 0,6 МПа), среднего давления (0,6 < Р < 1,6 МПа) и высокого давления (Р > 1,6 МПа).
По степени централизации технологических объектов подготовки газа различают индивидуальные, групповые и централизованные системы сбора (рис.5.7).
При индивидуальной системе сбора (рис.5.7, а) каждая скважина имеет свой комплекс сооружений для подготовки газа (УПГ), после которого газ поступает в сборный коллектор и далее на центральный сборный пункт (ЦСП). Данная система применяется в начальный период разработки месторождения, а также на промыслах с большим удалением скважин друг от друга. Недостатками индивидуальной системы являются: 1) рассредоточенность оборудования и аппаратов по всему промыслу, а, следовательно, сложности организации постоянного и высококвалифицированного обслуживания, автоматизации и контроля за работой этих объектов; 2) увеличение суммарных потерь газа по промыслу за счет наличия большого числа технологических объектов и т.д.
При групповой системе сбора (рис. 5.7, б) весь комплекс по подготовке газа сосредоточен на групповом сборном пункте (ГСП), обслуживающем несколько близко расположенных скважин (до 16 и более). Групповые сборные пункты подключаются к промысловому сборному коллектору, по которому газ поступает на центральный сборный пункт и далее потребителю.
Групповые системы сбора получили широкое распространение, так как их внедрение позволяет увеличить мощность и коэффициент загрузки технологических аппаратов, уменьшить число объектов контроля, обслуживания и автоматизации, а в итоге -снизить затраты на обустройство месторождения.
При централизованной системе сбора (рис. 5.7, в) газ от всех скважин по индивидуальным линиям или сборному коллектору поступает к единому центральному сборному пункту, где осуществляется весь комплекс технологических процессов подготовки газа и откуда он направляется потребителям.
П
Рис.5.8.
Формы коллекторной газосборной сети. Подключение
скважин: а) индивидуальное; б) групповое.
В каждом конкретном случае выбор системы сбора газа обосновывается технико-экономическим расчетом.
По конфигурации трубопроводных коммуникаций различают бесколлекторные и коллекторные газосборные системы. При бесколлекторной системе сбора газ (подготовленный или нет) поступает на ЦПС со скважин по индивидуальным линиям. В коллекторных газосборных системах отдельные скважины подключаются к коллекторам, а уже по ним газ поступает на ЦСП.
Форма газосборного коллектора зависит от конфигурации площади месторождения, его размера и размещения групповых замерных установок или ДНС. Название газосборной системы обычно определяется формой газосборного коллектора. Различают линейные, лучевые и кольцевые коллекторные газосборные системы (рис. 5.8).
Линейная газосборная сеть состоит из одного коллектора и применяется при разработке вытянутых в плане месторождений с небольшим числом (2 - 3) рядов скважин. Лучевая газосборная сеть состоит из нескольких коллекторов, сходящихся в одной точке в виде лучей. Кольцевая газосборная сеть представляет собой замкнутый коллектор, огибающий большую часть месторождения и имеющий перемычки. Кольцевая форма сети позволяет обеспечить бесперебойную подачу газа потребителям в случае выхода из строя одного из участков коллектора. По назначению газопроводы подразделяются на: подводящие газопроводы, сборные коллекторы и нагнетательные газопроводы.
Нагнетательные газопроводы берут свое начало у компрессорных станций и служат для:
подачи газа в газовую шапку продуктивных пластов с целью поддержания давления и продления фонтанирования скважин;
подачи газа через газораспределительные будки к устьям компрессорных скважин;
подачи газа дальним потребителям;
подачи газа на ГПЗ или газофракционирующую установку (ГФУ).
При выборе системы сбора газа руководствуются следующими соображениями:
обеспечение бесперебойности подачи газа;
маневренность системы, удобство обслуживания газосборных сетей при минимизации расходов на их сооружение и эксплуатацию.