
- •Введение. Методологические основы гидрофизики
- •1. Исторические основы и структура гидрофизики как науки
- •2. Системно-методологические основы и проблемы гидрофизики
- •1. Молекулярная физика воды в трех ее агрегатных состояниях
- •1.1. Общие сведения
- •1.2. Строение молекулы воды
- •1.3. Понятие о молекулярно-кинетической теории вещества и воды
- •1.4. Структура воды в трех ее агрегатных состояниях
- •Молекулярный состав льда, воды и водяного пара, %
- •2. Физические свойства воды, водяного пара, льда и снега
- •2.1. Физические свойства воды
- •Приравняв (2.22) и (2.23), получим
- •2.2. Физические свойства водяного пара в атмосфере
- •2.3. Лед и его физические свойства
- •3. Физико-механические и теплофизические свойства льда и шуги.
- •Значения предела прочности льда, Па
- •2.4. Физические свойства снега и снежного покрова
- •2.5. Физико-механические процессы, протекающие в снежном покрове
- •3. Основные положения теплообмена
- •3.1. Теплота. Температура. Температурное поле
- •3.2. Тепловой поток. Коэффициент теплопроводности
- •3.3. Теплопередача и теплоотдача
- •3.4. Количественная оценка конвективной теплоотдачи
- •3.5. Количественная оценка лучистого теплообмена
- •3.6. Количественная оценка теплоты при изменении агрегатного состояния вещества
- •3.7. Количественная оценка теплопередачи
- •3.8. Дифференциальное уравнение теплопроводности
- •3.9. Дифференциальное уравнение теплопроводности с источником теплоты
- •3.10. Условия однозначности
- •3.11. Методы решения задач
- •3.12. Определение коэффициента теплопроводности
- •3.13. Определение коэффициента температуропроводности методом регулярного режима
- •3.14. Определение коэффициента температуропроводности по полевым наблюдениям
- •4. Стационарное температурное поле
- •4.1. Теплопроводность плоского тела
- •5. Гидротермический расчет водоемов и водотоков
- •5.1. Дифференциальное уравнение температурного поля турбулентного потока
- •5.2. Уравнение теплового баланса непроточного водоема
- •5.3. Годовой термический цикл водоемов
- •Периоды и фазы годового термического цикла (гтц) глубокого водоема
- •6. Конвективные течения в водоемах
1.3. Понятие о молекулярно-кинетической теории вещества и воды
Структура воды в трех ее агрегатных состояниях еще не может считаться окончательно разгаданной. Существует ряд гипотез, объясняющих строение пара, воды и льда.
Эти гипотезы в большей или меньшей степени опираются на молекулярно-кинетическую теорию строения вещества, основы которой были заложены еще М.В.Ломоносовым. В свою очередь, молекулярно-кинетическая теория исходит из принципов классической механики, в которой молекулы (атомы) рассматриваются как шарики правильной формы, электрически нейтральные, идеально упругие. Такие молекулы подвержены лишь механическим соударениям и не испытывают никаких электрических сил взаимодействия. По этим причинам использование молекулярно-кинетической теории может лишь в первом приближении объяснить строение вещества.
Газ — в нашем случае водяной пар, — согласно молекулярно-кинетической теории, представляет собой собрание молекул. Расстояние между ними во много раз больше размеров самих молекул. Молекулы газа находятся в непрерывном беспорядочном движении, пробегая путь между стенками сосудов, в котором заключен газ, и сталкиваясь друг с другом на этом пути. Соударения молекул между собой происходят без потери механической энергии; они рассматриваются как соударения идеально упругих шариков. Удары молекул о стенки ограничивающего их сосуда обусловливают давление газа на эти стенки. Скорость движения молекул увеличивается с повышением температуры и уменьшается с ее падением.
Когда температура газа, уменьшаясь от более высоких значений, приближается к температуре кипения жидкости (для воды 100°C при нормальном давлении), скорость молекул уменьшается, и при соударении силы притяжения между ними становятся больше сил упругих отталкиваний при ударе и поэтому газ конденсируется в жидкость.
При искусственном сжижении газа температура его должна быть ниже так называемой критической, которой отвечает и критическое давление (п.1.1). При температуре выше критической газ (пар) никаким давлением не может быть переведен в жидкость.
Величина RTкр/ (PкрVкр) для всех газов, в том числе и для водяного пара, должна быть равна 8/3=2,667 (здесь R — газовая постоянная; Tкр, Pкр, Vкр — соответственно критические температура, давление, объем). Однако для водяного пара она равна 4,46. Это объясняется тем, что в состав пара входят не только одиночные молекулы, но и их ассоциации.
Жидкость в отличие от газа представляет собой совокупность молекул, расположенных столь близко друг от друга, что между ними проявляются силы взаимного притяжения. Поэтому молекулы жидкости не разлетаются в разные стороны, как молекулы газа, а только колеблются около своего положения равновесия. Вместе с тем, так как строение жидкости не вполне плотное, в ней имеются свободные места — «дырки», вследствие чего, по теории Я.И.Френкеля, некоторые молекулы, обладающие большей энергией, вырываются из своего «оседлого» места и скачком перемещаются в соседнюю «дырку», расположенную на расстоянии, примерно равном размеру самой молекулы. Таким образом, в жидкости молекулы сравнительно редко перемещаются с места на место, а большую часть времени находятся в «оседлом» состоянии, лишь претерпевая колебательные движения. Этим, в частности, объясняется слабая диффузия в жидкостях по сравнению с большой ее скоростью в газах. При нагревании жидкости энергия ее молекул увеличивается, скорость их колебания возрастает. При температуре 100°C и нормальном атмосферном давлении вода распадается на отдельные молекулы H2O, скорость которых уже в состоянии преодолеть взаимное притяжение молекул, и вода превращается в пар.
При охлаждении жидкости (воды) происходит обратный процесс. Скорости колебательного движения молекул уменьшаются, структура жидкости становится более прочной, и жидкость переходит в кристаллическое (твердое) состояние—лед. Различают два вида твердых тел: кристаллические и аморфные. Основным признаком кристаллических тел является анизотропия их свойств по различным направлениям: теплового расширения, прочности, оптических и электрических свойств и т. п. Аморфные тела изотропны, т. е. обладают одинаковыми свойствами во всех направлениях. Лед является кристаллическим телом.
В твердом теле, в отличие от газа и жидкости, каждый атом или молекула колеблются только около своего положения равновесия, но не перемещаются. В твердом теле отсутствуют «дырки», в которые могут переходить отдельные молекулы. Поэтому диффузия в твердых телах отсутствует. Атомы, составляющие молекулы, образуют прочную кристаллическую решетку, неизменность которой обусловлена молекулярными силами. Когда температура твердого тела приближается к температуре плавления, кристаллическая решетка его разрушается, и оно переходит в жидкое состояние. В отличие от кристаллизации жидкостей плавление твердых тел происходит сравнительно медленно, без явно выраженного скачка.
Кристаллизация большинства жидкостей происходит с уменьшением объема, а плавление твердых тел сопровождается увеличением объема. Исключение составляют вода, сурьма, парафин и некоторые другие вещества, у которых твердая фаза менее плотная, чем жидкая.