
- •Введение. Методологические основы гидрофизики
- •1. Исторические основы и структура гидрофизики как науки
- •2. Системно-методологические основы и проблемы гидрофизики
- •1. Молекулярная физика воды в трех ее агрегатных состояниях
- •1.1. Общие сведения
- •1.2. Строение молекулы воды
- •1.3. Понятие о молекулярно-кинетической теории вещества и воды
- •1.4. Структура воды в трех ее агрегатных состояниях
- •Молекулярный состав льда, воды и водяного пара, %
- •2. Физические свойства воды, водяного пара, льда и снега
- •2.1. Физические свойства воды
- •Приравняв (2.22) и (2.23), получим
- •2.2. Физические свойства водяного пара в атмосфере
- •2.3. Лед и его физические свойства
- •3. Физико-механические и теплофизические свойства льда и шуги.
- •Значения предела прочности льда, Па
- •2.4. Физические свойства снега и снежного покрова
- •2.5. Физико-механические процессы, протекающие в снежном покрове
- •3. Основные положения теплообмена
- •3.1. Теплота. Температура. Температурное поле
- •3.2. Тепловой поток. Коэффициент теплопроводности
- •3.3. Теплопередача и теплоотдача
- •3.4. Количественная оценка конвективной теплоотдачи
- •3.5. Количественная оценка лучистого теплообмена
- •3.6. Количественная оценка теплоты при изменении агрегатного состояния вещества
- •3.7. Количественная оценка теплопередачи
- •3.8. Дифференциальное уравнение теплопроводности
- •3.9. Дифференциальное уравнение теплопроводности с источником теплоты
- •3.10. Условия однозначности
- •3.11. Методы решения задач
- •3.12. Определение коэффициента теплопроводности
- •3.13. Определение коэффициента температуропроводности методом регулярного режима
- •3.14. Определение коэффициента температуропроводности по полевым наблюдениям
- •4. Стационарное температурное поле
- •4.1. Теплопроводность плоского тела
- •5. Гидротермический расчет водоемов и водотоков
- •5.1. Дифференциальное уравнение температурного поля турбулентного потока
- •5.2. Уравнение теплового баланса непроточного водоема
- •5.3. Годовой термический цикл водоемов
- •Периоды и фазы годового термического цикла (гтц) глубокого водоема
- •6. Конвективные течения в водоемах
2. Системно-методологические основы и проблемы гидрофизики
Жизнь на Земле появилась из вод Мирового Океана и развивается благодаря использованию воды. Практически все современное многоотраслевое мировое хозяйство заинтересовано в использовании воды в любой форме и различных объемах. Россия не является в этом смысле исключением. Однако большая часть водных ресурсов нашей страны сосредоточена в районах Севера, Сибири и Дальнего Востока, освоение которых осуществлялось на протяжении последних ста лет и тесно связано с развитием гидротехники, гидроэнергетики, водного хозяйства и транспорта. Обычно с объектов гидротехники и транспорта начинается освоение новых отдаленных районов, на базе которых затем формируются крупные территориально-промышленные комплексы. Инженерные сооружения, возводимые для этих целей (гидроузлы, мосты, порты и др.), должны быть надежны и безопасны, а поэтому при их проектировании, строительстве и эксплуатации, в первую очередь, необходимо учитывать особенности термического и ледового режима водных объектов (рек, озер и морей). Решению этих проблем мы во многом обязаны знаниям, накопленным гидрофизикой, которые развивались главным образом в связи с потребностями гидротехнического и транспортного строительства.
В настоящее время, когда наши знания о земных геосистемах и влиянии на них хозяйственной деятельности человека (геотехносистемах) становятся более обширными и разнообразными, когда в науку активно внедряются уникальные по своим возможностям информационные технологии, гидрофизика, как самостоятельная наука, характеризуется сменой парадигм (от греч. paradeigma – образец, пример – строго научная теория, воплощенная в системе понятий, выражающих существующие черты действительности; исходная концептуальная схема, модель постановки проблем и их решения, методов исследования, господствующих в течение определенного исторического периода в научном сообществе). Смена парадигм должна сопровождаться и сменой методологии.
Под методологическими основами понимается совокупность исходных идей, понятий и принципов, включающая такие составляющие каждой из наук, как концепция (определенный способ понимания, трактовки каких либо явлений, основная точка зрения, руководящая идея для их освещения), объект (имя предмета) и предмет (все то, что может находиться в отношении или обладать каким либо свойством), которые, в свою очередь, способствуют логической организации научной и практической деятельности, целью которой является описание, объяснение и предсказание процессов и явлений действительности, составляющих предмет изучения.
Основные положения концепции гидрофизики включают в себя следующее.
В основу ее содержания положены знания из фундаментальных и прикладных разделов геофизики, гидрологии, гидрогеологии. Основой для изучения курса являются такие дисциплины как физика, высшая математика, гидромеханика (механика жидкости и гидравлика) и др.
Концепция гидрофизики предполагает, что как наука она изучает физические основы природных и техногенных процессов и явлений, возникающих и протекающих в водной среде и грунтах земной гидросферы.
Глобальными объектами гидрофизики как науки являются:
природные системы (водных объектов (озер, незарегулированных водотоков, болот), почвогрунтов, ледников и др.), которые обладают рядом фундаментальных свойств: пространственно-временной эволюционной изменчивостью, дискретностью, организованностью;
природно-технические и технические системы (зарегулированные водоемы и водотоки совместно с гидротехническими и другими сооружениями и инженерно-техническими объектами).
Учитывая, что основным методом исследования уровней организации природных и природно-технических систем выступает системный анализ, а каждая такая система может выступать в качестве объекта исследований различных научных дисциплин, то предметом исследований гидрофизики будут являться те или иные аспекты этих систем. Для гидрофизики - это изучение:
молекулярного строения воды во всех ее состояниях (жидком, твердом, газообразном);
физических свойств воды, снега и льда – тепловых, радиационных, электрических, радиоактивных, акустических, механических;
процессов, происходящих в водоемах и водотоках – динамических (течения, волны, приливы и отливы), термических (нагревание и охлаждение водоемов, испарение и конденсация, образование и таяние льда и снега), а также оптических, связанных с распространением, поглащением и рассеянием света в толще воды, снега и льда.
Поэтому вода и ее различные состояния в природных и природно-технических системах могут рассматриваться гидрофизикой как один из самостоятельных первичных объектов исследования.
Гидрофизика имеет большое хозяйственно-экономическое и экологическое значение.
Особенно велика ее роль в гидротехническом строительстве и гидроэнергетике, сельском хозяйстве (в том числе, в гидромелиорации). В настоящее время невозможно себе представить проектирование ни одного гидротехнического сооружения без использования методов, созданных и накопленных гидрофизикой. Так, например, современный расчетный прогноз ледового режима бьефов проектируемых гидроузлов основывается на тепловых расчетах, созданных гидрофизикой. Установление возможного давления ледяного покрова на гидротехнические и транспортные сооружения, вызванного расширением льда при повышении температуры, нагревание и охлаждение водоемов, формирование и таяние ледяного и снежного покровов также производится методами, разработанными гидрофизикой. Без привлечения гидрофизики немыслимо проектирование гидротехнических сооружений и других сооружений на вечной мерзлоте. Практическая деятельность в области гидрофизики направлена на сохранение и улучшение экологических условий при гидроэнергетическом и водохозяйственном освоении регионов страны.