
- •Цифровые устройства
- •Введение.
- •1. Основные принципы цифровой электроники.
- •1.1. Аналоговые и цифровые сигналы
- •1.2. Модели и уровни представления цифровых устройств
- •1.3. Входы и выходы цифровых микросхем
- •1.4. Основные обозначения на схемах
- •1.5. Серии цифровых микросхем
- •1.6. Корпуса цифровых микросхем
- •2.1. Системы счисления.
- •2.2 Арифметические операции над двоичными числами.
- •2.3. Машинное представление информации
- •2.3.1 Формы представления чисел.
- •2.3.2. Буквенно-цифровой код
- •2.3.3 Восьмисегментный код
- •3. Логические основы цифровой техники
- •3.1 Основные законы алгебры логики
- •3.2 Формы описания логических функций и их использование для синтеза логических схем
- •3.3. Синтез комбинационных схем с несколькими выходами
- •3.4. Понятие логического базиса
- •4. Логические элементы цифровых устройств
- •4.1 Общие характеристики элементов цифровых устройств
- •4.2. Переходные процессы в логических схемах
- •4.3. Описание основных схемотехнических решений базовых логических элементов.
- •4.3.1. Интегральные схемы ттл и ттлш
- •4.3.2. Интегральные микросхемы на моп-структурах
- •4.3.3. Микросхемы эмиттерно-связанной транзисторной логики
- •4.3.4. Инжекционные интегральные логические схемы (и2л)
- •4.3.5. Схемные особенности логических элементов
- •4.4. Сложные комбинационные цифровые автоматы
- •4.4.1. Сумматор по модулю два
- •4.4.2. Мультиплексоры и демультиплексоры
- •4.4.3. Дешифраторы, дешифраторы-демультиплексоры, шифраторы
- •4.4.4. Преобразователи кодов
- •4.4.5. Сумматоры
- •4.5. Последовательностные схемы цифровых автоматов
- •4.5.1. Асинхронный r-s триггер
- •4.5.2. Синхронный r-s триггер
- •4.5.3. Синхронный d - триггер со статическим управлением
- •4.5.3. Синхронный d - триггер с динамическим управлением
- •4.5.4. Универсальный j-k триггер
- •4.5.6. Регистры
- •4.5.7. Счетчики
- •Полупроводниковые запоминающие устройства
- •5.1. Статические озу
- •5.2. Динамические озу
- •5.3. Однократно программируемые постоянные запоминающие устройства
- •5.4. Перепрограммируемые постоянные запоминающие устройства
- •Специальные элементы цифровых устройств
- •6.1. Автоколебательные генераторы на логических элементах
- •6.2. Формирователи сигналов
- •6.2.1. Укорачивающие формирователи
- •6.2.2. Расширяющие одновибраторы
- •6.2.3. Триггер Шмитта
- •6.2.4. Аналоговый компаратор
- •Преобразователи сигналов
- •7.1. Цифроаналоговые преобразователи
- •7.1.1. Цап с матрицей r-2r
- •7.1.2. Цап с матрицей звездообразного типа
- •7.2. Аналого-цифровые преобразователи
- •Ацп двойного интегрирования (интегрирующий ацп).
- •Сигма-дельта ацп.
- •Преобразователи напряжение-частота
- •8. Элементы цифровой индикации
- •Малогабаритные лампочки накаливания
- •Светодиодные индикаторы.
- •Жидкокристаллические индикаторы
- •Дисплеи на основе органических пленок (oled)
- •Динамическая индикация
- •Микропроцессоры Введение
- •1. Классификация микропроцессоров
- •2. Архитектура микроконтроллера
- •2.1 Основные характеристики микроконтроллера
- •2.2. Архитектура микроконтроллеров
- •2.2.1. Архитектура микроконтроллеров mcs-51
- •Альтернативные функции порта p3
- •2.2.2. Архитектура avr микроконтроллеров
- •3. Программирование микроконтроллеров
- •3.1 Языки программирования для микроконтроллеров
- •3.2. Виды компиляторов
- •3.3.1 Форматы и способы адресации данных
- •3.3.2. Форматы и способы адресации команд
- •3.3.3. Команды пересылки информации
- •3.3.4. Команды поразрядной обработки информации
- •3.3.5. Команды арифметических операций
- •3.3.6. Управляющие команды
- •3.3.7. Порядок выполнения прерываний в микроконтроллерах семейства mcs51.
- •3.3.8. Применение подпрограмм при программировании.
- •3.3.9. Директивы ассемблера для микроконтроллеров семейства mcs-51
- •3.3.10. Применение комментариев
- •3.3.11. Многофайловые программы.
- •3.3.12. Отладка программ.
- •3.3.13. Способы отладки программ.
- •Программируемые логические матрицы, программируемая матричная логика, базовые матричные кристаллы
- •4.1. Программируемые логические матрицы и программируема матричная логика
- •4.3. Базовые матричные кристаллы
- •4.4. Бис/сбис с программируемыми структурами (cpld, fpga, смешанные структуры)
- •Список использованной литературы
Преобразователи напряжение-частота
На базе преобразователей напряжение-частота (ПНЧ) могут быть построены интегрирующие АЦП, обеспечивающие относительно высокую точность преобразования при низкой стоимости. Существует несколько видов ПНЧ. Наибольшее применение нашли ПНЧ с заданной длительностью выходного импульса (Рис. 7.17). Работает ПНЧ следующим образом. Под действием положительного входного сигнала Uвх напряжение Uи на выходе интегратора И уменьшается. При этом ключ S разомкнут. Когда напряжение Uи уменьшится до нуля, компаратор К переключается, запуская тем самым одновибратор. Одновибратор формирует импульс стабильной длительности Ти, который управляет ключем. Последовательность этих импульсов является выходным сигналом ПНЧ. Ключ замыкается и ток Iоп в течение Ти поступает на вход интегратора, вызывая увеличение выходного напряжения интегратора. Далее описанный процесс снова повторяется.
Импульсы тока Iоп уравновешивают ток, вызываемый входным напряжением Uвх. В установившемся режиме
.
Отсюда следует
,
(7.6)
где Uвх.ср - среднее значение входного напряжения за период Т. Выражение (7.6) показывает, что точность преобразования определяется точностью установки опорного тока Iоп, точностью выдержки длительности импульса одновибратора Ти, а также точностью резистора R. Емкость конденсатора интегратора не оказывает влияния на частоту ПНЧ.
Рис. 7.18. Блок-схема АЦП на основе ПНЧ
Таким образом, по существу ПНЧ преобразует входное напряжение в унитарный код. Для его преобразования в двоичный позиционный можно использовать счетчик. Схема интегрирующего АЦП на базе ПНЧ приведена на рис. 7.18. Двоичный счетчик подсчитывает число импульсов, поступивших от ПНЧ за период Тотсч=1/fотсч, задаваемый отсчетными импульсами, которыми содержимое счетчика заносится в выходной регистр-защелку. Вслед за этим происходит обнуление счетчика. Число импульсов n, подсчитанных счетчиком за время Тотсч,
.
Здесь Uвх.ср - среднее значение входного напряжения за весь период Тотсч.
Можно заметно повысить точность ПНЧ, если вместо одновибратора включить тактируемый импульсами стабильной частоты D-триггер. Несложно убедиться (см. рис. 106), что в этом случае ПНЧ превращается в однобитный сигма-дельта модулятор.
8. Элементы цифровой индикации
Индикаторы предназначены для отображения различных видов информации для человека. Простейший вид информации - это двоичная информация. Например: исправен предохранитель или вышел из строя, включено питание или нет, задействован режим передачи или нет.
Особым видом двоичной информации можно считать пиктограммы, то есть небольшие картинки. Примером таких картинок можно назвать батарейку или антенну, вертикальные линии, отображающие уровень заряда этой батарейки или уровень принимаемого сигнала, колокольчик, будильник и т. п. Пример изображения пиктограмм приведён на рис. 8.1.
Рис. 8.1. Пример пиктограмм
Часто требуется отображать десятичную информацию. В этом случае используется десятиразрядный бинарный код. Каждому разряду ставится в соответствие изображение символа десятичной цифры. В этом смысле десятичный код практически не отличается от пиктограммы. Пример такого индикатора приведен на рис. 8.2. В каждый момент времени на индикаторе может отображаться только один символ из всех возможных.
Рис. 8.2. Пример десятичного индикатора
С целью экономии количества разрядов и упрощения конструкции индикаторов были придуманы семисегментные индикаторы. В них информация формируется при помощи семи сегментов. Изображение такого индикатора приведено на рис. 8.3.
Рис. 8.3. Изображение семисегментного индикатора и название его сегментов
Использование семисегментных индикаторов позволяет сформировать все десятичные цифры и часть букв. Однако не все символы могут быть отображены на этом индикаторе. Для отображения всех цифр, символов и букв алфавита в настоящее время используются матричные индикаторы. Наиболее распространены матричные индикаторы 5x7. Пример изображения на таком индикаторе буквы S приведён на
рис. 8.4.
Рис. 8.4. Пример изображения буквы S на матричном индикаторе 5x7.
Для отображения перечисленных видов информации можно воспользоваться различными индикаторами, такими как малогабаритные лампочки накаливания, газоразрядные индикаторные лампы, жидкокристаллические или светодиодные индикаторы. Рассмотрим подробнее преимущества и недостатки каждого из этих видов индикаторов.