
- •Цифровые устройства
- •Введение.
- •1. Основные принципы цифровой электроники.
- •1.1. Аналоговые и цифровые сигналы
- •1.2. Модели и уровни представления цифровых устройств
- •1.3. Входы и выходы цифровых микросхем
- •1.4. Основные обозначения на схемах
- •1.5. Серии цифровых микросхем
- •1.6. Корпуса цифровых микросхем
- •2.1. Системы счисления.
- •2.2 Арифметические операции над двоичными числами.
- •2.3. Машинное представление информации
- •2.3.1 Формы представления чисел.
- •2.3.2. Буквенно-цифровой код
- •2.3.3 Восьмисегментный код
- •3. Логические основы цифровой техники
- •3.1 Основные законы алгебры логики
- •3.2 Формы описания логических функций и их использование для синтеза логических схем
- •3.3. Синтез комбинационных схем с несколькими выходами
- •3.4. Понятие логического базиса
- •4. Логические элементы цифровых устройств
- •4.1 Общие характеристики элементов цифровых устройств
- •4.2. Переходные процессы в логических схемах
- •4.3. Описание основных схемотехнических решений базовых логических элементов.
- •4.3.1. Интегральные схемы ттл и ттлш
- •4.3.2. Интегральные микросхемы на моп-структурах
- •4.3.3. Микросхемы эмиттерно-связанной транзисторной логики
- •4.3.4. Инжекционные интегральные логические схемы (и2л)
- •4.3.5. Схемные особенности логических элементов
- •4.4. Сложные комбинационные цифровые автоматы
- •4.4.1. Сумматор по модулю два
- •4.4.2. Мультиплексоры и демультиплексоры
- •4.4.3. Дешифраторы, дешифраторы-демультиплексоры, шифраторы
- •4.4.4. Преобразователи кодов
- •4.4.5. Сумматоры
- •4.5. Последовательностные схемы цифровых автоматов
- •4.5.1. Асинхронный r-s триггер
- •4.5.2. Синхронный r-s триггер
- •4.5.3. Синхронный d - триггер со статическим управлением
- •4.5.3. Синхронный d - триггер с динамическим управлением
- •4.5.4. Универсальный j-k триггер
- •4.5.6. Регистры
- •4.5.7. Счетчики
- •Полупроводниковые запоминающие устройства
- •5.1. Статические озу
- •5.2. Динамические озу
- •5.3. Однократно программируемые постоянные запоминающие устройства
- •5.4. Перепрограммируемые постоянные запоминающие устройства
- •Специальные элементы цифровых устройств
- •6.1. Автоколебательные генераторы на логических элементах
- •6.2. Формирователи сигналов
- •6.2.1. Укорачивающие формирователи
- •6.2.2. Расширяющие одновибраторы
- •6.2.3. Триггер Шмитта
- •6.2.4. Аналоговый компаратор
- •Преобразователи сигналов
- •7.1. Цифроаналоговые преобразователи
- •7.1.1. Цап с матрицей r-2r
- •7.1.2. Цап с матрицей звездообразного типа
- •7.2. Аналого-цифровые преобразователи
- •Ацп двойного интегрирования (интегрирующий ацп).
- •Сигма-дельта ацп.
- •Преобразователи напряжение-частота
- •8. Элементы цифровой индикации
- •Малогабаритные лампочки накаливания
- •Светодиодные индикаторы.
- •Жидкокристаллические индикаторы
- •Дисплеи на основе органических пленок (oled)
- •Динамическая индикация
- •Микропроцессоры Введение
- •1. Классификация микропроцессоров
- •2. Архитектура микроконтроллера
- •2.1 Основные характеристики микроконтроллера
- •2.2. Архитектура микроконтроллеров
- •2.2.1. Архитектура микроконтроллеров mcs-51
- •Альтернативные функции порта p3
- •2.2.2. Архитектура avr микроконтроллеров
- •3. Программирование микроконтроллеров
- •3.1 Языки программирования для микроконтроллеров
- •3.2. Виды компиляторов
- •3.3.1 Форматы и способы адресации данных
- •3.3.2. Форматы и способы адресации команд
- •3.3.3. Команды пересылки информации
- •3.3.4. Команды поразрядной обработки информации
- •3.3.5. Команды арифметических операций
- •3.3.6. Управляющие команды
- •3.3.7. Порядок выполнения прерываний в микроконтроллерах семейства mcs51.
- •3.3.8. Применение подпрограмм при программировании.
- •3.3.9. Директивы ассемблера для микроконтроллеров семейства mcs-51
- •3.3.10. Применение комментариев
- •3.3.11. Многофайловые программы.
- •3.3.12. Отладка программ.
- •3.3.13. Способы отладки программ.
- •Программируемые логические матрицы, программируемая матричная логика, базовые матричные кристаллы
- •4.1. Программируемые логические матрицы и программируема матричная логика
- •4.3. Базовые матричные кристаллы
- •4.4. Бис/сбис с программируемыми структурами (cpld, fpga, смешанные структуры)
- •Список использованной литературы
5.4. Перепрограммируемые постоянные запоминающие устройства
В EPROM (РПЗУ-УФ) - информация стирается ультрафиолетовыми лучами, а в E2PROM (РПЗУ-ЭС) - электрическими сигналами.
Запоминающими элементами (современных) РПЗУ являются транзисторы типов МНОП (метал-нитрид-окисел-полупроводник) и ЛИЗМОП (лавинная инжекция заряда). Упрощенное устройство МНОП транзистора приведено на рис. 5.14.
Рис. 5.14. Устройство МНОП транзистора
Над каналом расположен тонкий слой оксида кремния Si02 (<5 нм), далее идет толстый слой нитрида кремния Si3N4 и А1 затвор. Благодаря туннельному эффекту носители заряда могут проходить через тонкую пленкуSi02. Они скапливаются на границе раздела Si02-Si3N4, где возникают центры захвата заряда. Этот заряд и является носителем информации, хранимой МНОП-транзистором. Заряд записывают созданием под затвором напряженности электрического поля, достаточной для возникновения туннельного эффекта. Наличие заряда влияет на пороговое напряжение транзистора. Для него отрицательный заряд увеличивает пороговое напряжение (транзистор закрыт), а положительный заряд уменьшает пороговое напряжение (транзистор открыт). Заряды создаются при приложении напряжения на затвор (±U3) (+U3 создает отрицательные заряды, a -U, - положительные). Одно из состояний МНОП-транзистора принимается за «0», другое-за «1».
При программировании
используется напряжение около 20В.
После 104...
10
перезаписей МНОП-транзистор перестает
устойчиво хранить заряд.
РПЗУ на МНОП-транзисторах энергонезависимы и могут хранить информацию десятками лет. Старая информация стирается записью нулей во все ЯП с помощью ультрафиолетового излучения (УФ).
Дальнейшее совершенствование РПЗУ привело к появлению РПЗУ на МОП-транзисторах с плавающим затвором (ЛИЗМОП-транзистор). Устройство такого транзистора приведено на рис. 5.15.
Рис. 5.15. Упрощенное устройство ЛИЗМОП-транзистора
Транзисторы имеют плавающий затвор из поликремния. На рис. он является вторым, дополнительным к управляющему затвору.
Такие транзисторы используются в РПЗУ с УФ и электрическим стиранием (Flash memory).
Принцип работы: в плавающий затвор вводится заряд, влияющий на величину порогового напряжения. Он сохраняется там, в течении длительного времени.
При подаче напряжения на управляющий затвор, сток и исток импульса положительного напряжения 20...25 В в p-n-переходах возникает лавинный пробой, область которого насыщается электронами. Часть электронов с высокой энергией проникает через потенциальный барьер в плавающий затвор, где и сохраняется многие годы.
Отрицательный заряд плавающего затвора увеличивает пороговое напряжение настолько, что транзистор всегда закрыт.
При отсутствии заряда транзистор работает в обычном ключевом режиме.
Для стирания информации УФ лучами в корпусе делают окошко. УФ лучи вызывают фототоки и тепловые токи и заряды покидают плавающий затвор. Время стирания -десятки минут. Число циклов- 10... 100.
При электронном
стирании (ЭС) на затвор подается ноль
Вольт, а на сток и исток - высокое
напряжение. Число циклов
.
ЭС стирание вытесняет УФ стирание. В настоящее время ведутся интенсивные исследования с целью увеличения объема памяти. Сейчас выпускаются микросхемы с объемом память несколько Гбайт.
Среди отечественных РПЗУ-УФ известна серия К573, а среди РПЗУ-ЭС -серии КР558 (n-МОП) и К1609, К1624, К1626 на ЛИЗМОП.