
- •1.Введение
- •1.1 Задачи и методы сопротивления материалов.
- •1.2 Классификация сил, действующих на элементы конструкций.
- •1.3 Основные предпосылки науки о сопротивлении материалов.
- •1.4 Реальный объект и расчетная схема.
- •1.5 Внутренние силы. Метод сечений.
- •1.6 Напряжения.
- •1.7 Деформации и перемещения.
- •1.8 План решения основной задачи сопротивления материалов.
- •2. Растяжение и сжатие
- •2.1 Продольная сила
- •2.2 Вычисление напряжений по площадкам, перпендикулярным и наклонным к оси стержня.
- •2.3 Допускаемые напряжения. Подбор сечений.
- •2.4 Продольные и поперечные деформации
- •2.5 Диаграммы растяжения и сжатия
- •2.6 Основные механические характеристики материала
- •2.7 Работа силы при ее статическом действии. Потенциальная энергия деформации
- •2.9 Перемещения поперечных сечений брусьев
- •2.10 Допускаемые напряжения. Расчеты на прочность.
- •2.11 Статически неопределимые системы
- •3.Сложное напряжённое состояние.
- •3.1Виды напряженного состояния.
- •3.2Напряжения по наклонным сечениям при осевом растяжении или сжатии (линейное напряжённое состояние).
- •3.3Понятие о главных напряжениях. Виды напряжённого состояния материала.
- •3.4Напряжения при плоском напряжённом состоянии.
- •3.5 Графическое определение напряжений (круг Мора).
- •3.6 Нахождение наибольших напряжений для объёмного напряжённого состояния.
- •3.8 Понятие о теориях прочности.
- •3.9 Проверка прочности по различным теориям.
- •4.1 Понятие о сдвиге. Расчёт заклепок на перерезывание.
- •4.2 Проверка заклёпок на смятие и листов на разрыв.
- •4.3 Расчёт сварных соединений.
- •4.4 Чистый сдвиг. Определение главных напряжений и проверка прочности.
- •4.5 Связь между напряжениями и деформацией при чистом сдвиге. Потенциальная энергия сдвига.
- •5.1 Основные понятия. Крутящий момент.
- •5.2 Определение напряжений при кручении круглого вала.
- •5.3 Вычисление полярных моментов инерции и моментов сопротивления сечения вала.
- •5.4 Условие прочности при кручении.
- •5.5 Определение деформаций при кручении.
- •5.6 Потенциальная энергия при кручении.
- •5.7 Определение предельной грузоподъёмности скручиваемого стержня.
- •6.8 Напряжения и деформации в винтовых пружинах с малым шагом.
- •5.9 Статически неопределимые задачи при кручении
- •6. Изгиб
- •§ 6.1. Внутренние силовые факторы, возникающие в поперечных сечениях бруса при изгибе
- •§ 6.2. Напряжения в брусе при чистом изгибе
- •§ 6.3. Напряжения при поперечном изгибе
- •§ 6.4. Дифференциальное уравнение упругой линии балки. Перемещения при изгибе
- •§ 6.5. Универсальное уравнение упругой линии балки
- •§6.6 Контроль правильности построения эпюр q и m.
- •§6.7. Способ сложения действия сил при построении эпюр.
- •§6.8. Графический метод построения эпюр изгибающих моментов и поперечных сил.
- •7. Вычисление моментов инерции плоских фигур.
- •§7.1. Вычисление моментов инерции и моментов сопротивления для простейших сечений.
- •§7.2. Общий способ вычисления моментов инерции сложных сечений.
- •§ 7.3. Подбор сечения балок по допускаемым нагрузкам.
- •§7.4. Применение понятия о потенциальной энергии к определению деформаций.
- •§ 7.5. Вычисленние потенциальной энергии.
- •§7.6. Теорема Кастильяно.
- •§7.7 Статически неопределимые балки.
- •§7.8. Способ сравнения деформаций.
- •§7.9. Применение теоремы Кастильяно, теоремы Мора
- •§7.10. Выбор лишней неизвестной и основной системы.
- •§7.11. План решения статически неопределимой задачи.
- •8. Косой изгиб
- •§8.1. Основные понятия.
- •§8.2. Косой изгиб. Вычисление напряжений.
- •§8.3. Определение деформаций при косом изгибе
- •9. Совместное действие изгиба и растяжения или сжат
- •9.1 Изгиб балки при действии продольных и поперечных сил.
- •9.3. Ядро сечения
- •10.Совместное действие кручения и изгиба
- •11.3 Зависимость критической силы от условий закрепления стержня
- •12.1. Введение»
- •12.2 Вычисление напряжений при равноускоренном движении
- •12.3 Расчёт вращающегося кольца (обод маховика)
1.5 Внутренние силы. Метод сечений.
Внутренние силы возникают не только между отдельными взаимодействующими узлами конструкции, но, вообще, между всеми смежными частицами объекта при нагружении.
Внутри любого материала имеются внутренние межатомные силы, наличие которых определяет способность тела воспринимать действующие на него внешние силы, сопротивляться разрушению, изменению формы и размеров. Приложение к телу внешней нагрузки вызывает изменение (увеличение или уменьшение) внутренних сил, т. е. появление дополнительных внутренних сил. В сопротивлении материалов изучаются дополнительные внутренние силы. Поэтому под внутренними силами (или внутренними усилиями) в сопротивлении материалов понимают силы взаимодействия между отдельными элементами сооружения или между отдельными частями элемента, возникающие под действием внешних сил.
Рассмотрим некоторое тело, имеющее форму бруса (рис. 1.5, а). Пусть к нему приложена некоторая нагрузка, т. е. система внешних сил Р1, Р2, …, Рn, удовлетворяющая условиям равновесия. Внутренние силы, возникающие в брусе, выявляются только в том случае, если рассечь брус мысленно на две части, например, сечением I. Такой прием выявления внутренних сил в сопротивлении материалов носит название метода сечений.
Так как связи между частями устранены, необходимо действие правой части на левую и левой на правую заменить системой сил.
Мысленно рассечем элемент плоскостью I. Силы воздействия отсеченной правой части элемента на его левую часть (на правый ее торец) являются по отношению к ней внешними; для всего же элемента в целом они являются внутренними силами. Этим силам (на основании известного закона механики: действие равно противодействию) равны по величине и противоположны по направлению внутренние силы воздействия левой части элемента на правую.
В общем случае пространственной задачи взаимодействие между левой и правой частями элемента можно представить некоторой силой R, приложенной в произвольно выбранной точке О сечения I, и моментом М относительно некоторой оси, проходящей через эту точку (рис. 1.5, б, в). Сила R является главным вектором, а момент М – главным моментом системы внутренних сил, действующих по проведенному сечению.
Рис. 1.5
Определение внутренних сил, возникающих в брусе, обычно производится для сечений, перпендикулярных к его продольной оси, т.е. для поперечных сечений бруса. Точка О принимается расположенной на оси бруса, т. е. совпадающей с центром тяжести его поперечного сечения. Главный вектор R раскладывается на две составляющие силы: силу N, направленную вдоль оси бруса и называемую продольной силой, и силу Т, действующую в плоскости поперечного сечения и называемую поперечной силой (рис. 1.6, а). Момент М раскладывается на два составляющих момента: момент Мк, действующий в плоскости поперечного сечения и называемый крутящим моментом, и момент Ми, действующий в плоскости, перпендикулярной к поперечному сечению, и называемый изгибающим моментом (рис. 1.6, б).
Рис. 1.6
Каждому из внутренних усилий N, Т, Мк и Ми соответствует определенный вид деформации бруса. Продольной силе N соответствует растяжение (или сжатие), поперечной силе Т - сдвиг, крутящему моменту Мк - кручение, а изгибающему моменту Ми - изгиб. Различные их сочетания, например, сжатие с изгибом, изгиб с кручением и т. п., представляют собой сложные сопротивления.
Таким образом, проекция на какую-либо ось внутренних усилий в сечении, действующих со стороны левой части стержня на правую, равна проекции на эту ось всех внешних сил, прилаженных к левой части. Аналогично, момент относительно какой-либо оси внутренних усилий в сечении, действующих со стороны левой части стержня на правую, равен моменту всех внешних сил, приложенных к левой части относительно этой оси.