
- •1.Введение
- •1.1 Задачи и методы сопротивления материалов.
- •1.2 Классификация сил, действующих на элементы конструкций.
- •1.3 Основные предпосылки науки о сопротивлении материалов.
- •1.4 Реальный объект и расчетная схема.
- •1.5 Внутренние силы. Метод сечений.
- •1.6 Напряжения.
- •1.7 Деформации и перемещения.
- •1.8 План решения основной задачи сопротивления материалов.
- •2. Растяжение и сжатие
- •2.1 Продольная сила
- •2.2 Вычисление напряжений по площадкам, перпендикулярным и наклонным к оси стержня.
- •2.3 Допускаемые напряжения. Подбор сечений.
- •2.4 Продольные и поперечные деформации
- •2.5 Диаграммы растяжения и сжатия
- •2.6 Основные механические характеристики материала
- •2.7 Работа силы при ее статическом действии. Потенциальная энергия деформации
- •2.9 Перемещения поперечных сечений брусьев
- •2.10 Допускаемые напряжения. Расчеты на прочность.
- •2.11 Статически неопределимые системы
- •3.Сложное напряжённое состояние.
- •3.1Виды напряженного состояния.
- •3.2Напряжения по наклонным сечениям при осевом растяжении или сжатии (линейное напряжённое состояние).
- •3.3Понятие о главных напряжениях. Виды напряжённого состояния материала.
- •3.4Напряжения при плоском напряжённом состоянии.
- •3.5 Графическое определение напряжений (круг Мора).
- •3.6 Нахождение наибольших напряжений для объёмного напряжённого состояния.
- •3.8 Понятие о теориях прочности.
- •3.9 Проверка прочности по различным теориям.
- •4.1 Понятие о сдвиге. Расчёт заклепок на перерезывание.
- •4.2 Проверка заклёпок на смятие и листов на разрыв.
- •4.3 Расчёт сварных соединений.
- •4.4 Чистый сдвиг. Определение главных напряжений и проверка прочности.
- •4.5 Связь между напряжениями и деформацией при чистом сдвиге. Потенциальная энергия сдвига.
- •5.1 Основные понятия. Крутящий момент.
- •5.2 Определение напряжений при кручении круглого вала.
- •5.3 Вычисление полярных моментов инерции и моментов сопротивления сечения вала.
- •5.4 Условие прочности при кручении.
- •5.5 Определение деформаций при кручении.
- •5.6 Потенциальная энергия при кручении.
- •5.7 Определение предельной грузоподъёмности скручиваемого стержня.
- •6.8 Напряжения и деформации в винтовых пружинах с малым шагом.
- •5.9 Статически неопределимые задачи при кручении
- •6. Изгиб
- •§ 6.1. Внутренние силовые факторы, возникающие в поперечных сечениях бруса при изгибе
- •§ 6.2. Напряжения в брусе при чистом изгибе
- •§ 6.3. Напряжения при поперечном изгибе
- •§ 6.4. Дифференциальное уравнение упругой линии балки. Перемещения при изгибе
- •§ 6.5. Универсальное уравнение упругой линии балки
- •§6.6 Контроль правильности построения эпюр q и m.
- •§6.7. Способ сложения действия сил при построении эпюр.
- •§6.8. Графический метод построения эпюр изгибающих моментов и поперечных сил.
- •7. Вычисление моментов инерции плоских фигур.
- •§7.1. Вычисление моментов инерции и моментов сопротивления для простейших сечений.
- •§7.2. Общий способ вычисления моментов инерции сложных сечений.
- •§ 7.3. Подбор сечения балок по допускаемым нагрузкам.
- •§7.4. Применение понятия о потенциальной энергии к определению деформаций.
- •§ 7.5. Вычисленние потенциальной энергии.
- •§7.6. Теорема Кастильяно.
- •§7.7 Статически неопределимые балки.
- •§7.8. Способ сравнения деформаций.
- •§7.9. Применение теоремы Кастильяно, теоремы Мора
- •§7.10. Выбор лишней неизвестной и основной системы.
- •§7.11. План решения статически неопределимой задачи.
- •8. Косой изгиб
- •§8.1. Основные понятия.
- •§8.2. Косой изгиб. Вычисление напряжений.
- •§8.3. Определение деформаций при косом изгибе
- •9. Совместное действие изгиба и растяжения или сжат
- •9.1 Изгиб балки при действии продольных и поперечных сил.
- •9.3. Ядро сечения
- •10.Совместное действие кручения и изгиба
- •11.3 Зависимость критической силы от условий закрепления стержня
- •12.1. Введение»
- •12.2 Вычисление напряжений при равноускоренном движении
- •12.3 Расчёт вращающегося кольца (обод маховика)
§ 7.5. Вычисленние потенциальной энергии.
А. При вычислении потенциальной энергии мы будем предполагать, что деформации не только материала, но и всей конструкции, следуя закону Гука, пропорциональны нагрузкам, т. е. линейна сними связанна и растут постепенно вместе с ними.
Мы знаем, что при статическом растяжении эли сжатии стержня силами P величина работы Ap, а следовательно, и величина энергии U равняется:
В случае сдвига
При кручении
Так же как и при кручении, может быть вычислена потенциальная энергия при чистом изгибе.
Концевые
сечения балки под действием изгибающих
моментов (Рис. 7.12) повернуться на угол
, где
- центральный угол изогнувшейся по дуге
радиусом ρ
оси балки .
Тогда
Так
как
,
а
=
.
Следует, что потенциальная энергия деформации равна половине произведения силы или пары сил на перемещение по ее направлении того сечения, где эта сила приложена. Условимся называть термином “обобщенная сила” всякую нагрузку, вызывающую соответствующее нагрузки перемещения, то есть и сосредоточенную силу и пару сил, и т. п.; перемещение же, соответствующее этой силе, будем называть “обобщенной координатой”. «Соответствие» заключается в том, что речь идет о перемещении того сечения, где приложена рассматриваемая сила, причем о таком перемещении, что произведение его на эту силу дает нам величину работы; для сосредоточенной силы это будет линейное перемещение по направлению действия силы — прогиб, удлинение; для пары сил — это угол поворота сечения по направлению действия пары.
Теперь мы можем определить: потенциальная энергия деформация численно равна половине произведения обобщенной силы на соответствующую ей координату:
где Р — обобщенная сила, δ — обобщенная координата.
Полученные ранее формулы показывают, что потенциальная энергия является функцией второй степени от независимых внешних сил, так как в эти формулы не входят реакция, зависящие от приложенных к элементу сил не связанные с ними уравнениями равновесия. Из тех же формул видно, что величина потенциальной энергии деформации является функцией второй степени от «обобщенных координат» системы и вполне ими определяется. Таким образом, порядок приложения нагрузок в этом отношении безразличен, важна лишь окончательная форма деформированного элемента. Поэтому, хотя результаты этого параграфа получены в предположении, что нагрузка возрастает статически, при сохранении равновесия в течение всего процесса нагружения, однако выведенные формулы сохраняют силу и при любом способе приложения нагрузок, лишь бы значения сил я деформаций были связаны линейной зависимостью и относились к тому моменту, когда установится равновесие конструкции.
Б. В общем случае изгиба изгибающий момент М(х) является величиной переменной.
В любом сечении ему будет сопутствовать поперечная сила Q(х).Поэтому рассматривать следует уже не всю балку в целом, а лишь бесконечно малый элемент балки длинной dx.
Под действием изгибающих усилий сечение элемента поворачивается и образуют между собой угол d0. Касательные же усилия стремятся вызвать перекос элемента; таким образом перемещения от нормальных напряжения идут перпендикулярно к направлению касательных напряжений и наоборот. Это позволяет независимо вычислить работу изгибающих касательных усилий.
Обычно работа касательных усилий оказывается малой по сравнению с работой нормальных, поэтому мы пока ею будем пренебрегать. Элементарная работа нормальных усилий (как в случае чистого изгиба) равна:
Или
Вся потенциальная энергия изгиба получится суммированием по длине балки
(7.6)
Знак предела интегрирования условно указывает, что интегрирование должно охватить всю балку; в тех случаях, когда для М(х) мы имеем несколько участков, интеграл (7.6) приходится разбивать на сумму интегралов .
Вычислим потенциальную энергию на двух опорах; нагруженной силой Р (Рис. 7.13). Эпюра моментов имеет два участка; поэтому