
- •Содержание
- •Введение
- •1. Теория применения малых гэс
- •1.1. Исходные гидрологические данные для гидроэнергетических расчетов
- •1.2. Гидроэнергетический потенциал малых рек
- •1.3. Гидроэнергетические ресурсы водохранилищ неэнергетического назначения
- •2. Проектирование малых гэс
- •2.1. Основные схемы использования водной энергии
- •2.2. Определение основных параметров малых гэс
- •3. Гидросиловое оборудование малых гэс
- •3.1. МикроГэс
- •4. Методика выбора и расчёта вэс
- •4.1. Методика выбора ветроэнергетической установки
- •4.2. Энергетические показатели использования ветроустановки
- •5. Характеристика нижегородской области с точки зрения ветроэнергетических ресурсов
- •5.1. Источники информации по результатам измерения скорости ветра
- •5.2 Определение параметров распределения скоростей ветра по Вейбуллу
- •5.3. Измерение скорости ветра в зависимости от масштаба класса открытости местности
- •5.4. Требования к выбору мест размещения вэу
- •5.5. Расчет выработки энергии вэу с использованием данных наблюдений за скоростью ветра на метеостанциях
- •6. Солнечные жидкостные коллекторы
- •6.1. Виды солнечных коллекторов и проектирование коллекторов
- •6.2. Проектирование коллекторов
- •7. Солнечные воздушные коллекторы
- •7.1. Солнечный пруд
- •7.2. Солнечный коллектор с пирамидальной оптической системой
- •8. Теоретические аспекты использования биогаза
- •8.1. Понятие биогаза
- •8.2. Методы получения биогаза
- •8.3. Установка в Зиггервизене
- •8.4. Биогазовая установка в Лахольме
- •8.5. Современное состояние биоэнергетики
- •9. Опыт россии по использованию биогаза
- •9.1. Опыт России по термохимической конверсии биомассы
- •9.2. Опыт России по биотехнологической конверсии биомассы
- •9.3.2 Автономный биоэнергетический модуль для среднего фермерского хозяйства – «биоэн-1»
- •9.3.3. Биогазовая установка бгу-1,5п объемом 1,5 м3 для получения биогаза и экологически чистых удобрений
- •9.3.4 Биогазовая установка "Блок-модуль 2-4-ибгу-1"
- •10. Методика расчета бгу
- •10.1. Методика расчета параметров бгу
- •10.2. Тепловой расчет метантенка
- •10.3. Пример расчета бгу
- •11. Солнечная энергия
- •12. Вихревые трубки
- •Список использованной литературы
7.2. Солнечный коллектор с пирамидальной оптической системой
Основной путь улучшения рабочих характеристик солнечного коллектора заключается в создании условий, позволяющих увеличить количество солнечной энергии, поступающей на коллектор.
Рисунок 7.14 Пирамидальная оптическая система:
1 – лучи полуденного солнца; 2 – угол верхней грани пирамиды к горизонтали 35 °; 3 – угол крыши к горизонтали 27,5 °; 4 – поверхность коллектора размером 0,6 х 2,5 м; 5 – потолочные балки; 6 – угол панели, оптимизированный для 21 января
Модифицированный плоский солнечный коллектор, разработанный Джеральдом Фалбелом, концентрирует солнечную энергию при помощи, отражающей пирамидальной оптики. В результате можно уменьшить необходимые размеры обычно дорогостоящей пластины теплоприемника. В основании пирамиды устроена крышка с плоским зеркалом на петлях, которую можно закрывать во время облачной погоды.
В солнечную погоду наклон крышки можно регулировать, чтобы получить максимальное отражение через раскрытый зев на поверхность поглотителя. Можно достигнуть концентрации, в 2...4 раза превышающей обычную плотность солнечной радиации.
Хотя конструкция и корпус меньшего по размерам теплоприемника могут оказаться дороже, но, пожалуй, одним из преимуществ такой конструкции является потенциальная возможность устранения проблемы замерзания коллекторов водяного типа с помощью закрывающейся шарнирной панели, когда солнца нет; это может снизить стоимость коллектора и системы. Кроме того, можно получить более высокие температуры теплоносителя без уменьшения КПД коллектора.
В холодное время года в помещении всегда бывает теплее чем, на улице. Чем лучше теплозащитные качества дома, тем уютнее человек чувствует себя в нем.
8. Теоретические аспекты использования биогаза
8.1. Понятие биогаза
В нетрадиционной энергетике особое место занимает переработка биомассы (органических сельскохозяйственных и бытовых отходов) метановым брожением с получением биогаза, содержащего около 70 % метана, и обеззараженных органических удобрений. Чрезвычайно важна утилизация биомассы в сельском хозяйстве, где на различные технологические нужды расходуется большое количество топлива и непрерывно растет потребность в высококачественных удобрениях. Всего в мире в настоящее время используется или разрабатывается около 60-ти разновидностей биогазовых технологий.
Биогаз – это смесь метана и углекислого газа, образующаяся в процессе анаэробного сбраживания специальных реакторах – метантэнках, устроенных и управляемых таким образом, чтобы обеспечить максимальное выделение метана. Энергия, получаемая при сжигании биогаза, может достигать от 60 до 90 % той, которой обладает исходный материал. Другое, – и очень важное, – достоинство процесса переработки биомассы состоит в том, что в его отходах содержится значительно меньше болезнетворных микроорганизмов, чем в исходном материале.
Получение биогаза экономически оправдано и является предпочтительным при переработке постоянного потока отходов (стоки животноводческих ферм, скотобоен, растительных отходов и т.д.). Экономичность заключается в том, что нет нужды в предварительном сборе отходов, в организации и управлении их подачей; при этом известно, сколько и когда будет получено отходов.
Получение биогаза, возможное в установках самых разных масштабов, особенно эффективно на агропромышленных комплексах, где существует возможность полного экологического цикла. Биогаз используют для освещения, отопления, приготовления пищи, для приведения в действие механизмов, транспорта, электрогенераторов.
Подсчитано, что годовая потребность в биогазе для обогрева жилого дома составляет около 45 м3 на 1 м2 жилой площади, суточное потребление при подогреве воды для 100 голов крупного рогатого скота – 5…6 м3. Потребление биогаза при сушке сена (1 тонна) влажностью 40 % равно 100 м3, 1 тонны зерна – 15 м3, для получения 1 кВт/ч электроэнергии – 0.4…0.7 м3.
Свежий навоз животноводческих ферм и жидкие составляющие навоза вместе со сточными водами являются загрязнителями окружающей среды. Повышенная восприимчивость сельскохозяйственных культур к свежему навозу приводит к загрязнению грунтовых вод и воздушного бассейна, создает благоприятную среду для зараженности почвы вредными микроорганизмами. В навозе животных жизнедеятельность болезнетворных бактерий и яиц гельминтов не прекращается, содержащиеся в нем семена сорных трав сохраняют свои свойства.
Для устранения этих негативных явлений необходима специальная технология обработки навоза, позволяющая повысить концентрацию питательных веществ и одновременно устранить неприятные запахи, подавить патогенные микроорганизмы, снизить содержание канцерогенных веществ. Перспективным, экологически безопасным и экономически выгодным направлением решения этой проблемы является анаэробная переработка навоза и отходов в биогазовых установках с получением биогаза. Благодаря высокому содержанию метана (до 70 %) биогаз может гореть. Оставшаяся после такой естественной переработки органическая масса представляет собой качественное обеззараженное удобрение. Для переработки используются дешевые отходы сельского хозяйства: навоз крупного рогатого скота, свиней, коз, овец, помет птицы, солома, стружка, опилки, сорная растительность, бытовые отходы, отходы жизнедеятельности человека, бытовой органический мусор и т.п. Полученный биогаз идет на отопление животноводческих помещений, жилых домов, теплиц, энергию для приготовления пищи, сушку сельскохозяйственных продуктов горячим воздухом, подогрев воды, выработку электроэнергии с помощью газовых генераторов. После утилизации содержание питательных веществ в полученном удобрении увеличивается на 15 % по сравнению с обычным навозом. При этом в новом удобрении уничтожены гельминты и болезнетворные бактерии, семена сорных трав. Такой навоз применяется без традиционных выдержек и хранения. При утилизации получается также жидкий экстракт, который предназначается для полива кормовых трав, овощей и т.п. Сухое удобрение используется по прямому назначению, при этом урожайность люцерны повышается на 50 %, кукурузы на 12 %, овощей на 20…30 %.
Из навоза одной коровы можно получить в сутки до 4,2 м3 биогаза. Энергия, заключенная в одном м3 биогаза, эквивалентна энергии 0,6 м3 природного горючего газа, 0,74 л нефти, 0,65 л дизельного топлива, 0,48 л бензина и т.п. При применении биогаза экономятся также мазут, уголь, электроэнергия и другие энергоносители. Внедрение биогазовых установок улучшает экологическую обстановку на животноводческих фермах, птицефабриках и на прилегающих территориях, предотвращаются вредные стоки в балки, озера, овраги, в малые и крупные реки, где улучшается среда обитания.
Ежегодное количество органических отходов по разным отраслям народного хозяйства России составляет более 390 млн. т. Сельскохозяйственное производство дает 250 млн. т, из них 150 млн. т приходится на животноводство и птицеводство, 100 млн. т – на растениеводство. Лесо- и деревопереработка дают 700 млн. т, твердые бытовые отходы городов – 60 млн. т, коммунальных стоков – 10 млн. т (все приведенные значения даются на абсолютно сухое вещество).
Энергия, запасенная в первичной и вторичной, биомассе может конвертироваться в технически удобные виды топлива или энергии несколькими путями.
Получение растительных углеводородов (растительные масла, жирные высокомолекулярные кислоты и их эфиры, предельные и непредельные углеводороды и т.д.). Например, для южных регионов России это может быть рапсовое масло, добавляемое к дизельному топливу.
Термохимическая конверсия биомассы (твердой, до 60 %) в топливо: прямое сжигание, пиролиз, газификация, сжижение, фест-пиролиз.
Биотехнологическая конверсия биомассы (при влажности от 75 % и выше) в топливо: низкоатомные спирты, жирные кислоты, биогаз.
На современном этапе экономического развития России в соответствии с Государственной научно-технической программой "Экологически чистая энергетика" возобновляемая энергетика развивается по двум последним направлениям.