
- •1. Статистическое наблюдение, его формы, виды и способы.
- •2. Виды статистических группировок. Построение группировки по количественному признаку
- •3. Абсолютные, средние и относительные статистические показатели.
- •4 Аналитические показатели временного ряда
- •5. Индивидуальные и сводные индексы, их взаимосвязи.
- •6. Методы проверки временных рядов на наличие тенденции.
- •7. Методы выбора формы трендовой модели
- •8. Построение моделей авторегрессионных преобразований.
- •1. Основан на использовании, так называемых, последовательных или конечных разностей.
- •2. Метод отклонений эмпирических значений признака от теоретических по уравнению тренда полученных.
- •3. Метод Фриша-Воу
- •9. Прогнозирование на основе средних аналитических показателей временных рядов.
- •10. Прогнозирование на основе экстраполяции тренда.
- •11. Прогнозирование с учетом дисконтирования информации
- •12. Прогнозирование на основе кривых роста Гомперца и Перля-Рида.
- •13. Автокорреляция, ее выявление в уровнях временного ряда
- •14. Прогнозирование связных временных рядов
- •15. Оценка точности и надежности прогнозов.
- •16. Основные понятия теории выборочного наблюдения
- •17. Алгоритмы формирования выборочной совокупности
- •18. Простая случайная и систематическая выборки
- •19. Расслоенная выборка
- •20. Кластерная (сериальная) выборка
- •21.Предмет, задачи и система показателей макроэкономической статистики
- •22. Статистическое исследование результатов экономической деятельности
- •23. Статистическое исследование трудового потенциала и трудовых ресурсов
- •24. Статистическое исследование цен и ценообразования
- •25.Статистическое исследование внешней экономической деятельности
- •26. Сводный счет «Производство», его назначение и система показателей.
- •27. Методология исчисления валового внутреннего продукта и национального дохода
- •28. Межотраслевой баланс производства и распределения продукции в снс
- •29. Система макроэкономических показателей, применяемая в международной статистической практике
- •30. Предмет, метод, функции и система показателей социальной статистики
- •1. Общество, его основные характеристики и дифференциация
- •2. Условия жизни
- •3. Уровень жизни (материальная сторона)
- •4. Способ жизни и качественные аспекты жизни
- •Расчет коэффициентов корреляции Кэндела и Спирмена . [-1;1]
- •31.Статистическое исследование социальной структуры и социальной мобильности населения
- •32.Статистическое исследование жизненного уровня населения
- •33.Статистическое исследование дифференциации населения по денежным доходам
- •34.Статистическое исследование сферы обслуживания и охраны здоровья населения
- •35.Предмет, задачи и система показателей демографической статистики
- •36.Статистическое исследование численности, размещения и состава населения
- •37.Статистическое исследование естественного движения населения
- •38.Статистическое исследование миграционного движения населения.
- •39.Статистическое исследование воспроизводства населения
- •40. Понятие, принципы и методы демографического прогнозирования
- •41.Случайные величины. Закон распределение вероятностей дискретной случайной величины
- •42. Функция распределения и плотность вероятности случайной величины, их свойства
- •43. Основные числовые характеристики случайной величины и их свойства
- •44.Биноминальный и нормальный законы распределения случайной величины
- •45.Парные и частные коэффициенты корреляции, их свойства
- •46. Множественные коэффициенты корреляции и детерминации, их свойства
- •47. Понятие генеральной совокупности и выборки из нее
- •48. Определение точечной оценки (статистики) и основные требования, предъявляемые к точечной оценке (несмещенность, состоятельность, эффективность)
- •49. Интервальные оценки параметров генеральной совокупности
- •50. Интервальная оценка генеральной средней нормально распределенной генеральной совокупности.
- •51. Интервальная оценка генеральной дисперсии нормально распределенной генеральной совокупности.
- •52. Статистические гипотезы и правила их проверки. Статистические критерии.
- •53. Сущность дисперсионного анализа. Основные задачи, решаемые с его помощью
- •54. Определение оценок параметров классической линейной модели множественной регрессии с помощью метода наименьших квадратов
- •55. Факторный и компонентный анализ как методы снижения размерности
- •56. Кластерный анализ как метод многомерной классификации
- •57. Проверка значимости уравнения множественной регрессии и его коэффициентов. Интервальное оценивание коэффициентов уравнения регрессии
- •58. Гомо- и гетероскедастичность остатков в регрессионных моделях.
- •59. Обобщенный метод наименьших квадратов (омнк). Свойства омнк-оценок
- •60. Дискриминантный анализ как метод многомерной классификаций с обучением
4 Аналитические показатели временного ряда
На практике для количественной оценки динамики явлений широко применяется ряд основных аналитических показателей. К таким показателям относятся: абсолютный прирост, темп роста и прироста, абсолютное значение одного процента прироста. При этом принято сравниваемый уровень называть отчетным, а уровень, с которым происходит сравнение – базисным.
Абсолютный прирост (Δ) характеризует размер увеличения (или уменьшения) уровня ряда за определенный промежуток времени. Он равен разности двух сравниваемых уровней и выражает абсолютную скорость роста. В общем случае абсолютный прирост может быть представлен в виде:
где yi – текущий уровень ряда динамики;
i = 2,3,…,n; k = 1,2,…,n-1.
При k = 1 от текущего уровня yi вычитается
предыдущий уровень yi-1, и получается
формула для расчета цепного
абсолютного прироста:
базисный абсолютный
прирост определяется относительно
начального уровня ряда:
Базисный абсолютный прирост определяется не всегда относительно первого уровня, он также может быть определен относительно уровня ряда динамики, принятого за базу сравнения.
Показатель интенсивности изменения уровня ряда – в зависимости от того, выражается ли он в виде коэффициента или в процентах, принято называть коэффициентом роста или темпом роста. Разница между ними заключается только в единице измерения.
Коэффициент роста показывает, во сколько раз данный уровень ряда больше базисного уровня (если этот коэффициент больше единицы) или какую часть базисного уровня составляет уровень текущего периода за некоторый промежуток времени (если он меньше единицы).
Темпы роста характеризуют отношение двух сравниваемых уровней ряда в виде:
где
yi – текущий уровень ряда динамики; i =
2,3,…,n; k = 1,2,…,n-1.
Цепной:
Базисный:
где y1 – уровень ряда динамики, принятый за базу сравнения.
Темп прироста характеризует абсолютный прирост в относительных величинах. Определенный в процентах темп прироста показывает, на сколько процентов изменился сравниваемый уровень по отношению к уровню, принятому за базу сравнения:
Если темп роста всегда положительное число, то темп прироста может быть положительным, отрицательным и равным нулю. Зависимость цепного темпа прироста от цепного темпа роста:
где
Трц – цепной темп роста.
Базисный темп прироста равен отношению базисного абсолютного прироста к уровню ряда, принятому за базу сравнения:
Зависимость базисного темпа прироста от базисного темпа роста:
где
Трб – базисный темп роста.
На практике часто проводят сопоставление показателей абсолютного прироста и темпа прироста за одни и те же периоды времени. Для этого рассчитывают абсолютное значение одного процента прироста. Оно представляет собой одну сотую часть базисного уровня и в то же время – отношение абсолютного прироста к соответствующему темпу прироста:
Таким образом, базисные показатели динамики характеризуют окончательный результат всех изменений в уровнях ряда от периода, к которому относится базисный уровень, до данного (i-го) периода. Цепные показатели динамики характеризуют интенсивность изменения уровня от периода к периоду в пределах изучаемого промежутка времени.
содержание