
- •1. Физич. Представление магн. Поля в тр-ре. Выделение из общей картины потока рассеяния. Параметры рассеяния в электрических схемах замещения тр-ра.
- •2. Переход от эл.Магн. Схемы тр-ра к электрич. (схема замещ.). Ур-ния приведённого тр-ра. Вект. Диаграммы. (26)
- •3. Принцип создания вращающегося магнитного поля в машинах переменного тока. Обмотки статоров машин переменного тока. Укорочение и распределение обмотки.
- •Физические условия работы тр-ра под нагрузкой. Векторные диаграммы.
- •6. Обмотки роторов асинхронных двигателей, их конструктивные особенности в связи с улучшением пусковых свойств двигателей.
- •7. Схема замещения ад как результат приведения вторич. Обмотки к первич. По частоте, числу фаз и эффект. Числу витков. Скольжение как фактор нагрузки.
- •10. Как нагрузить синхронный генератор, работающий параллельно с сетью, активной и реактивной мощностью? Угловые хар-ки. U-образные хар-ки.(30, 45)
- •11. Синхронный компенсатор. Принцип работы, особенности конструкции. Характеристики.
- •12. Сд. Описание процессов, харак-тики. Особенности конструкц. И применения. Пуск в ход.
- •14. Характеристики генераторов постоянного тока параллельного возбуждения. Условия самовозбуждения генератора.
- •Физическая картина магн. Поля в мпт на холостом ходу и при нагрузке. Реакция якоря при положении щёток на геометрической нейтрали и при сдвиге. Устройство и назначение компенсационной обмотки.
- •Влияние реакции якоря на характеристики генераторов и двигателей пост. Тока. Особенности применения шунтовых и сериесных обмоток в мпт.
- •Реакция якоря в синхронных машинах. Влияние реакции якоря на характеристики синхронных генераторов.
- •По какому, на Ваш взгляд, пути следует пойти при проектировании тр-ра с уменьшенным значением напряжения короткого замыкания?
- •19. Постоянна ли «машинная постоянная»?
- •20. Как следует проектир-ть асинхр. Двигатель с повыш. Перегружаемостью?
- •Есть ли оптимальная величина воздушного зазора асинхронного двигателя?(34)
- •Какие элементы конструкции синхр. Машины определяют её статическую устойчивость? По какому пути следует пойти при проектировании синхр. Машины с повышенной перегрузочной способностью?(31)
- •Способы пуска асинхронных двигателей. Их оценка и сравнение.(84)
- •Предложите способы, позволяющие улучшить коммутацию в машинах постоянного тока (мпт).(33)
- •Параллельная работа трансформаторов. Физический смысл напряжения короткого замыкания Uk.
- •Группы соединений обмоток трехфазных тр-ров.
- •Классификация эл. Машин по конструктивным признакам, конструктивные особенности крупных эл. Машин с современными системами охлаждения.(68)
- •29. Эквивалентная тепловая схема ад закрытого обдуваемого исполнения.
- •30. Укажите пути, по которым следует пойти при проектировании асинхронного двигателя с повышенным пусковым моментом.
- •31. Подпятники и направляющие подшипники крупных вертикальных эл. Машин.
- •Обзор методов теплового расчета электрических машин. Сущность метода тепловых схем.(50, 82) Порядок составления тепловой схемы.
- •Виды, способы и типы систем охлаждения эл.Машин. Задачи вентиляц. Расчета эл.Машин.(47, 63, 80)
- •35. Виды термических сопротивлений и их физическая природа. Определение термических сопротивлений для различных условий передачи тепла.(49)
- •36. Расчет совместной работы вентилятора и вентиляционного тракта. Графическое решение вентиляционных схем.(48, 83)
- •37. Типы систем охлаждения тр-ров.
- •38. Обмотки машин с непосредственным газовым и жидкостным охлаждением.
- •39. Причина возникновения гидравлических сопротивлений. Виды гидравлических сопротивлений, их физическая природа.
- •41. Характеристики генератора постоянного тока параллельного возбуждения. Условия самовозбуждения генератора.
- •Скоростные и механические характеристики двигателей постоянного тока параллельного и последовательного возбуждения.
- •Векторная диаграмма тр-ра при нагрузке.
- •45. Определите в процентах ток холостого хода тр-ра при включении его:
- •Как изменится ток холостого хода тр-ра, рассчитанного на номинальное напряжение 220 в, если его включить в сеть 380 в?
- •49. Увлажнение изоляции. Методы определения влажности изоляции. Сушка эл. Машин, способы сушки.(81)
- •Обозначение выводов электрических машин постоянного и переменного тока. Проверка правильности соединения обмоток.
- •Машины переменного тока
- •Климатическое исполнение электрических машин.
- •Подшипниковые токи. Причины их появления. Способы их устранения.
- •Категория размещения электрических машин.
- •Балансировка роторов и якорей электрических машин.
38. Обмотки машин с непосредственным газовым и жидкостным охлаждением.
39. Причина возникновения гидравлических сопротивлений. Виды гидравлических сопротивлений, их физическая природа.
Возникающие при движении жидкости потери давления мож но разбить на две составляющие:
∆р = ∆ртр + ∆рм , где ∆ртр — потери давления, обусловленные силами трения; ∆рм – потери давления, обусловленные различными конструктивными элементами и местными преградами в потоке (поворот потока, сужение, расширение, задвижка и т. п.),
Потери давления ∆ртр представляют собой потери на преодоление внутреннего трения между различными слоями жидкости, движущимися относительно друг друга. Поэтому внутреннее трение существенно зависит от распределения скоростей в потоке, а следовательно, и от режима течения жидкости.
Коэффициент
местного сопротивления
при внезапном расширении
Диффузор
(постепенное
расширение
канала).
Коэффициент
местного сопротивления диффузора (рис,
2.3) определяют
в долях от потерь давления на внезапное
расширение:
При
внезапном сужении
потока также
образуются вихревые зоны и происходит
сжатие потока.
Коэффициент
местного сопротивления при внезапном
сужении
40. Условия устойчивости работы асинхронного двигателя.
Р ассмотрим часть этой характеристики, соответствующая режиму двигателя, т.е. при скольжении, изменяющемся от 1 до 0. Обозначим момент, развиваемый двигателем при пуске в ход (S=1) как Мпуск. Скольжение, при котором момент достигает наибольшего значения, называют критическим скольжением Sкр, а наибольшее значение момента – критическим моментом Мкр. Отношение критического момента к номинальному называют перегрузочной способностью двигателя Мкр / Mн = λ = 2 ÷ 3.
Из анализа формулы (*) на максимум можно получить соотношения для Мкр и Sкр ; .
Критический момент не зависит от активного сопротивления ротора, но зависит от подведенного напряжения. При уменьшении U1 снижается перегрузочная способность асинхронного двигателя.
Из
выражения (*), разделив М на Мкр,
можно получить формулу, известную под
названием «формула Клосса», удобную
для построения M = f(S).
.
Если
в эту формулу подставить вместо М и S
номинальные значения момента и скольжения
(Мн
и Sн),
то можно получить соотношение для
расчета критического скольжения.
.
Участок характеристики (рис. 2.14), на котором скольжение изменяется от 0 до Sкр, соответствует устойчивой работе двигателя. На этом участке располагается точка номинального режима (Мн, Sн). В пределах изменения скольжения от 0 до Sкр изменение нагрузки на валу двигателя будет приводить к изменению частоты вращения ротора, изменению скольжения и вращающего момента. С увеличением момента нагрузки на валу частота вращения ротора станет меньше, что приведет к увеличению скольжения и электромагнитного (вращающего) момента. Если момент нагрузки превысит критический момент, то двигатель остановится.
Участок характеристики, на котором скольжение изменяется от Sкр до 1, соответствует неустойчивой работе двигателя. Этот участок характеристики двигатель проходит при пуске в ход и при торможении.