
- •Обработка результатов измерений в физическом практикуме
- •Погрешности прямых измерений
- •Погрешности косвенных измерений
- •Правила представления результатов измерения
- •Правила построения графиков
- •Динамика поступательного движения Работа 1. Оценка точности прямых и косвенных измерений
- •Общие сведения
- •П орядок выполнения работы
- •Результаты измерений диаметра проволоки штангенциркулем и микрометром
- •Результаты измерений тока и напряжения
- •Порядок выполнения работы
- •Порядок выполнения работы
- •Контрольные вопросы
- •Динамика вращательного движения
- •Работа 4. Определение моментов инерции параллелепипеда методом крутильных колебаний
- •Общие сведения
- •Порядок выполнения работы
- •Контрольные вопросы
- •Работа 5. Определение момента инерции с помощью маятника Обербека
- •Общие сведения
- •Порядок выполнения работы
- •Контрольные вопросы
- •Работа 6. Определение момента инерции твердых тел с помощью маятника максвелла
- •Общие сведения
- •Порядок выполнения работы
- •Контрольные вопросы
- •Работа 7. Измерение скорости полета пули с помощью баллистического маятника
- •Общие сведения
- •Порядок выполнения работы
- •Порядок выполнения работы
- •Контрольные вопросы
- •Работа 9. Изучение прецессии гироскопа
- •Общие сведения
- •Порядок выполнения работы
- •Молекулярная физика
- •Порядок выполнения работы
- •Контрольные вопросы
- •Работа 11. Определение отношения
- •Методом стоячей волны
- •Общие сведения
- •Порядок выполнения работы
- •Контрольные вопросы
- •Работа 12. Определение коэффициента вязкости, длины свободного пробега и эффективного диаметра молекулы газа
- •Общие сведения
- •Порядок выполнения работы
- •Контрольные вопросы
- •Работа 13. Определение коэффициента вязкости жидкости
- •Общие сведения
- •Порядок выполнения работы
- •Порядок выполнения работы
- •Контрольные вопросы
- •Рекомендательный библиографический список
- •Содержание
Работа 9. Изучение прецессии гироскопа
Цель работы – экспериментально исследовать основные свойства гироскопа, изучить законы вращательного движения твердого тела.
Общие сведения
Гироскопом
называют массивное симметричное тело,
вращающееся с большой скоростью вокруг
оси симметрии. Основное свойство
гироскопа – способность сохранять
неизменным направление
оси
вращения при отсутствии действующего
на него момента внешних сил. Это свойство
гироскопа основано на законе сохранения
момента импульса. Гироскопы широко
применяются в технике: в качестве
стабилизаторов направления при движении
судов, самолетов (устройство автопилот)
и т.д.
Рассмотрим гироскоп, основным элементом которого является диск D, вращающийся со скоростью вокруг горизонтальной оси ОО' (см. рисунок). Ось гироскопа шарнирно закреплена в точке C. Прибор снабжен противовесом K. Если противовес установлен так, что точка C является центром масс системы (m – масса гироскопа; m0 – масса противовеса K; масса стержня пренебрежимо мала), то без учета трения можно записать:
т.е.
результирующий момент сил, действующий
на систему, равен нулю. Тогда справедлив
закон сохранения момента импульса
:
.
Иными
словами, в этом случае
const
(здесь J – момент инерции гироскопа,
– собственная угловая скорость вращения
гироскопа).
Поскольку момент инерции диска относительно его оси симметрии есть величина постоянная, то вектор угловой скорости также остается постоянным как по величине, так и по направлению. Вектор направлен по оси вращения в соответствии с правилом правого винта. Таким образом, ось свободного гироскопа сохраняет свое положение в пространстве неизменным.
Если
к противовесу K добавить еще один с
массой m1, то центр масс системы
сместится и возникнет вращающий момент
направленный перпендикулярно оси ОО'
в горизонтальной плоскости. Согласно
уравнению моментов,
.
Под действием этого вращающего момента
вектор момента импульса получит
приращение
,
совпадающее по направлению с вектором
:
.
(1)
Спустя
время
момент импульса гироскопа изменится
на величину
:
.
Таким образом, вектор изменяет свое направление в пространстве, все время оставаясь в горизонтальной плоскости. Учитывая, что вектор момента импульса гироскопа направлен вдоль оси вращения, поворот вектора на некоторый угол d за время dt означает поворот оси вращения на тот же угол. В результате ось симметрии гироскопа начнет вращаться вокруг неподвижной вертикальной оси ВВ' с угловой скоростью:
.
Такое
движение называется регулярной
прецессией, а величина
– угловой скоростью прецессии.
Выясним зависимость угловой скорости прецессии гироскопа от основных параметров системы. Из формул (1) получим
При
малых углах поворота из геометрических
соображений (см. рисунок)
,
тогда
,
и угловая скорость прецессии
.
(2)
Подвижный элемент гироскопа представляет собой массивный маховик (диск), закрепленный на оси электродвигателя. Вдоль оси маховика закреплена планка с линейной метрической шкалой. Вдоль планки может перемещаться противовес.
Угол поворота оси двигателя в горизонтальной плоскости и время движения измеряются электронной схемой с фотоэлектрическим датчиком. Кроме того, угол поворота гироскопа можно считывать по нанесенной на основании подвижной части угловой шкале. По окружности основания через каждые 5 нанесены отверстия, которые служат для считывания угла поворота при помощи фотоэлектрического датчика. На лицевой панели блока управления расположены индикаторные табло угла и времени поворота, а также кнопки «СЕТЬ», «СБРОС», «СТОП», и рукоятка регулятора скорости вращения «РЕГ. СКОРОСТИ».