- •Билет 41
- •1)Назначение мини-грп
- •2)Технологии применения пав в качестве деэмульгаторов.
- •3)Задачи геофизических методов контроля за разработкой нефтяных месторождений.
- •Билет 42
- •1)Этапы проведения грп.
- •2)Внутритрубная деэмульсация нефти.
- •3)Технологии разработки месторождений при анпд и авпд.
- •Билет 43
- •1)Классификация плунжерных глубинных насосов.
- •2)Принципиальная схема гравитационного осаждения.
- •3)Методы контроля за разработкой нефтяных месторождений.
- •Билет 44
- •1)Основные способы заканчивания скважин.
- •2)Установка термической подготовки нефти.
- •3)Особенности разработки месторождений высоковязких нефтей.
- •Билет 45
- •1)Влияние газа на работу шсну и методы его снижения.
- •2)Установка комплексной подготовки нефти.
- •3)Основные теории фильтрации жидкости в пористой среде.
- •Билет 46
- •1)Назначение и технология проведения термометрических исследований скважин.
- •2)Принципиальные схемы отстойных аппаратов различного типа.
- •3)Категории скважин.
- •Билет 47
- •1)Периодическая эксплуатация уэцн.
- •2)Схема работы гидравлического предохранительного клапана и устройство дыхательного клапана.
- •3)Методы определения исходных параметров залежи для гидродинамических расчетов.
- •Билет 48
- •1)Ликвидация скважин.
- •2)Схемы подогревателей нефти и печей.
- •3)Методы построения гидродинамических моделей нефтяных месторождений.
- •Билет 49
- •1)Определение параметров пласта по данным исследования скважин.
- •2)Электродегидраторы, конструкция, область применения.
- •3)Методы контроля за ппд.
- •Билет50
- •1.Технологии определения профиля притока и профиля приемистости.
- •2)Схемы совмещенных аппаратов.
- •3)Прогнозирование показателей разработки по фактическим данным с помощью характеристик вытеснения.
2)Схема работы гидравлического предохранительного клапана и устройство дыхательного клапана.
Гидравлический предохранительный клапан (рис. 1) предназначается для ограничения избыточного давления или вакуума в газовом пространстве при отказе дыхательного клапана, а также при недостаточном сечении его. Предохранительные клапаны рассчитаны на несколько большие давление и вакуум, чем дыхательный клапан: на избыточное давление 588 Н/м2 и разрежение 392 Н/м2. Гидравлический предохранительный клапан устанавливают в комплекте с огневым предохранителем. Предохранительный клапан заливают незамерзающими неиспаряющимися маловязкими жидкостями (раствор глицерина, этиленгликоль и др.), образующими гидравлический затвор, через который выходит газ с воздухом или входит («вдох») воздух. На рис. 97, а показан момент, когда давление в газовом пространстве резервуара выше расчетного и газ сбрасывается в атмосферу через предохранительный клапан. На рис. 97, б изображено положение, когда дыхательный клапан не сработал и образовавшийся в газовом пространстве резервуара вакуум стал настолько большим, что поступление воздуха в резервуар происходит через предохранительный клапан. На рис. 97, в показан случай, когда давление в газовом пространстве резервуара и атмосферного воздуха одинаково.
Огневые предохранители устанавливают на резервуарах в комплекте с дыхательными и предохранительными клапанами и они предназначаются для предохранения газового пространства резервуара от проникновения в него пламени через дыхательный или предохранительный клапан.
Дыхательные клапаны (рис. 2) рассчитаны на избыточное давление или вакуум в газовом пространстве резервуара 20 • 9,81 Па (20 мм вод. ст.). Дыхательный клапан работает следующим образом. При повышении давления внутри резервуара клапан 3 Поднимается, и лишний газ выходит в атмосферу, а при понижении давления внутри резервуара открывается клапан 1, и в резервуар поступает воздух. Клапан 1 и 3 могут быть отрегулированы на опрелделенное давление и подниматься только в том случае, когда давление или разряжение внутри резервуара достигнет определенной величины. Над клапанами имеются съемные люки, через которые вынимают клапаны для осмотра и ремонта.
Размер дыхательных клапанов выбирают в зависимости- от допускаемой пропускной способности их. Дыхательный клапан является ответственным элементом оборудования резервуара.
Рис. . Дыхательный клапан:
1 — корпус; 2 — клапан для подачи воздуха; 3 —клапан для вых
3)Методы определения исходных параметров залежи для гидродинамических расчетов.
Методы ГДИС предназначены для изучения продуктивных пластов при их испытании, освоении и эксплуатации в добывающих и нагнетательных скважинах с целью получения данных об их продуктивности и приемистости, фильтрационных параметрах и скин‑факторе, трассировки границ пласта и особенностях зон дренирования, типа пласта коллектора, анизотропии пласта по проницаемости, режима залежи и др.
Методы ГДИС позволяют непосредственно определить гидропроводность и пьезопроводность пласта, продуктивность скважины, оценить качество вскрытия пласта и технологическую эффективность внедрения методов увеличения дебитов скважин. Кроме того, методами ГДИС можно определить тип коллектора, наличие границ неоднородности гидродинамической связи между скважинами и между пластами и т.д.
По технологии исследования различают:
методы ГДИС на установившихся режимах фильтрации;
методы ГДИС на неустановившихся режимах фильтрации;
К методам неустановившихся режимов фильтрации можно отнести и метод гидропрослушивания.
При этих исследованиях решается обратная задача теории фильтрации, т.е. при известных дебитах и забойных давлениях определяются параметры пласта.
Метод исследования на установившихся режимах фильтрации предназначен для определения коэффициента продуктивности скважины и характера фильтрации жидкости в пласте.
К методам исследования скважин на неустановившихся режимах фильтрации относятся:
снятие КВД и КПД в эксплуатационных и нагнетательных скважинах;
снятие КВУ в эксплуатационных скважинах механизированного фонда, снятие кривой стабилизации давления (КСД) «метод суммарной добычи»;
экспресс-методы, прослеживание изменения забойного давления (КПЗД).
В отечественных руководствах по ГДИС излагаются в основном методы обработки только на базе представления о плоскорадиальной фильтрации к вертикальным и наклонным скважинам. Это так называемые традиционные методы.
Массовое внедрение на промыслах гидравлического разрыва пласта и переход на бурение горизонтальных скважин и скважин с боковым стволом выдвинуло проблему дальнейшего развития и совершенствования комплекса ГДИС со сложными траекториями фильтрации.
Развитие теории и практики ГДИС в нашей стране и за рубежом шло параллельными путями. Несмотря на различие в способах анализа материалов исследований, базовые, теоретические представления, а также принципы интерпретации результатов исследований скважин у отечественных исследователей и их зарубежных коллег близки.
Современные методы ГДИС являются дальнейшим развитием и существенным дополнением широко известных традиционных ГДИС.
Методы ГДИС являются косвенными методами определения параметров пласта. Их теоретической и методологической основой служат решения прямых и обратных задач подземной гидромеханики, которые не всегда имеют однозначные решения. Поэтому интерпретация ГДИС носит комплексных характер с использованием результатов ГИС, лабораторных и геолого-промысловых исследований.
