Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГОСЫ(21-30).docx
Скачиваний:
10
Добавлен:
29.04.2019
Размер:
393.14 Кб
Скачать

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 21

  1. Коэффициент подачи УШСН.

Действительная подача Qд, замеренная на поверхности после сепарации и охлаждения нефти, как правило, меньше теоретической (за исключением насосных скважин с периодическими фонтанными проявлениями) в силу целого ряда причин. Отношение Qд к Qт называют коэффициентом подачи насоса, который учитывает все возможные факторы, отрицательно влияющие на подачу ШСН. Таким образом, коэффициент подачи

Где F - площадь сечения плунжера (или цилиндра насоса); S-величина хода;n-количество ходов плунжера

Для каждой конкретной скважины величина η служит в известной мере показателем правильности выбора оборудования и режима откачки установки. Нормальным считается, если η >0.6 – 0.65.

Однако бывают условия (большие газовые факторы, низкие динамические уровни), когда не удается получить и этих значений коэффициентов подачи, и тем не менее откачка жидкости с помощью ШСН может оставаться самым эффективным способом эксплуатации.

На коэффициент подачи ШСН влияют постоянные и переменные факторы.

К постоянным факторам можно отнести

  • влияние свободного газа в откачиваемой смеси;

  • уменьшение полезного хода плунжера по сравнению с ходом точки подвеса штанг за счет упругих деформаций насосных штанг и труб;

  • уменьшение объема откачиваемой жидкости (усадка) в результате ее охлаждения на поверхности и дегазации в сепарационных устройствах.

К переменным факторам, изменяющимся во времени, можно отнести:

  • утечки между цилиндром и плунжером, которые зависят от степени износа насоса и наличия абразивных примесей в откачиваемой жидкости;

  • утечки в клапанах насоса из-за их немгновенного закрытия и открытия и, главным образом, из-за их износа и коррозии;

  • утечки через неплотности в муфтовых соединениях НКТ, которые все время подвергаются переменным нагрузкам.

Переменные факторы, сводящиеся кразличного рода утечкам, меняются во времени и поэтому их трудно определить расчетным путем, за исключением утечек через зазор между плунжером и цилиндром. Это приводит к тому, что коэффициент подачи η вновь спущенного в скважину насоса, после незначительного его снижения в начальный период в результате приработки плунжера, затем стабилизируется и длительное время остается практически постоянным. Затем он заметно начинает снижаться в результате прогрессирующего износа клапанов, их седел и увеличения зазора между плунжером и цилиндром. Наряду с этим может произойти и резкое уменьшение коэффициента подачи в результате смещения втулок насосов, отворотов и неплотностей в муфтах.

Таким образом, результирующий коэффициент подачи насоса можно представить как произведение нескольких коэффициентов, учитывающих влияние на его подачу различных факторов:

где η1 - коэффициент наполнения цилиндра насоса жидкостью, учитывающий влияние свободного газа; η2—коэффициент, учитывающий влияние уменьшения хода плунжера; η3 - коэффициент утечек, учитывающий наличие неизбежных утечек жидкости при работе насоса; η4 - коэффициент усадки, учитывающий уменьшение объема жидкости при достижении ею поверхностных емкостей.

2.Виды коррозии в системе сбора скважинной продукции.

Коррозия – это разрушение металлов в результате химического или электрохимического воздействия окружающей среды, это окислительно-восстановительный гетерогенный процесс, происходящий на поверхности раздела фаз.

Хотя механизм коррозии в разных условиях различен, по виду разрушения поверхности металла различают:

Равномерную или общую коррозию, т.е. равномерно распределенную по поверхности металла. Пример: ржавление железа, потускнение серебра.

Местную или локальную коррозию, т.е. сосредоточенную на отдельных участках поверхности. Местная коррозия бывает различных видов:

В виде пятен – поражение распространяется сравнительно неглубоко и занимает относительно большие участки поверхности;

В виде язв – глубокие поражения локализуются на небольших учасках поверхности;

В виде точек (питтинговая) - размеры еще меньше язвенных разъеданий.

Межкристаллитную коррозию – характеризующуюся разрушением металла по границам кристаллитов (зерен металла). Процесс протекает быстро, глубоко и вызывает катастрофическое разрушение.

Избирательную коррозию – избирательно растворяется один или несколько компонентов сплава, после чего остается пористый остаток, который сохраняет первоначальную форму и кажется неповрежденным.

Коррозионное растрескивание происходит, если металл подвергается постоянному растягивающему напряжению в коррозионной среде. КР может быть вызвано абсорбцией водорода, образовавшегося в процессе коррозии.

По механизму протекания различают химическую и электрохимическую коррозию.

Химическая коррозия характерна для сред не проводящих электрический ток.

Коррозия стали в водной среде происходит вследствие протекания электрохимических реакций, т.е. реакций сопровождающихся протеканием электрического тока. Скорость коррозии при этом возрастает.

Электрохимическая коррозия возникает в результате работы множества макро- или микрогальванопар в металле, соприкасающемся с электролитом.

Причины возникновения гальванических пар в металлах:

Соприкосновение двух разнородных металлов;

Наличие в металле примесей;

Наличие участков с различным кристаллическим строением;

Образование пор в окисной пленке;

Наличие участков с различной механической нагрузкой;

Наличие участков с неравномерным доступом активных компонентов внешней среды, например, воздуха, и, таким образом, образуются гальванические элементы, микропары, то есть образуются анодные и катодные участки. Анодом является металл с более высоким отрицательным потенциалом, катодом является металл с меньшим потенциалом. Между ними возникает электрический ток.

3.Назначение и область применения потокоотклоняющих технологий.

Потокоотклоняющие технологии относятся к физико-химическимМУНам

Суть метода: для изменения направления фильтрац.потоков путем закачки водоизолирующих составов в высокопроницаемые промытые зоны с целью их изоляции и образ-я водонепрониц.экрана, тем самым направляя потоки в низкопроницаемыепропластки.

Основной реагент полиакриламид. Различают несколько модификаций:

СПС - сшитая полимерная система, применяется высоко и низко молекулярный полимер, в качестве сшивателя применяется ацетат хрома ПАА+АХ или и хлоркалиевыекварцы ПАА+ ХКК. За счет сшивателей стабилизируют полимер.

ВУС - ВязкоУпругиеСоставы. В Основе присутствуют высокомолекулярные полимеры. ПАА-0.6-3%.

Применяются для выравнивания профиля премистости в нагнетательных скважинах.

ПАПС-ПоверхностноАктивныеПолимерныеСистемы, смесь ПАА и ПАВ. Направлен на увеличения коэфицента охвата заводнением и увеличения коэфицента вытеснения.

ГОС-ГелеОбразующиеСистемы, направлены на загущения воды и увеличения коэфицента охвата пласта.

БГС-БольшеобъемнаяГелеваяСистема, применяются для выравнивания профиля премистости в нагнетательных скважинах и увеличения охвата пластов за счет загущения закачиваемой воды.

При вытеснении из пластов нефти различной вязкости обычной водой текущая и конечная нефтеотдача снижается с увеличением отношения вязкостей воды и нефти. Для уменьшения этого отношения и как следствие увеличения нефтеотдачи, используются водные растворы полимеров. В качестве полимера чаще всего используют полиакриламид (ПАА). Молекулы полимера продвигаясь в пористой среде, в водном растворе как бы цепляются за зерна этой среды, создавая дополнительное фильтрационное сопротивление и сорбируясь на зернах пород. Фильтрация водного раствора полимеров происходит так, что с увеличением градиента давления скорость его фильтрации возрастает медленнее по сравнения со скоростью фильтрации воды по закону Дарси. Жидкость, скорость фильтрации которой нелинейно зависит от градиента давления, и при том с каждым приращением градиента давления возрастает на все меньшую величину называетсядилантной. Вязкость закачиваемого раствора ПАА доводят до 5-6 вязкостей воды. Механизм вытеснения нефти раствором ПАА похож на поршневое вытеснение нефти водой.

Водный раствор ПАА также применяют с целью регулирования движения жидкости попропласткам. При закачке дилантной жидкости в пласт, она уходит в высокопроницаемые пропластки, снижая тем самым скорость движения воды в данных пропластках. Далее повышают давление нагнетания, тем увеличивая скорость вытеснения нефти водой из менее проницаемых пропластков

Экзаменационный билет № 22

  1. Оптимизация режимов работу УЭЦН.

Задача заключается в том, чтобы для каждой конкретной скважины с учетом ее характеристик подобрать все звенья ЭЦН и 1 глубину спуска насоса. Вначале устанавливают необходимые исходные данные - выбирают уравнение притока, определяют свойства нефти воды и газа и их смесей, которые предполагается откачивать из скважины, конструкцию эксплуатационной обсадной колонны глубину спуска насоса находят с учетом расходного газосодержания нефтегазового потока потока на входе Для этою строят кривые распределения давления и расходного газосодержания потока вдоль обсадных труб шагами от забоя снизу вверх, начиная от заданного забойного давления, определяемого по уравнению притока для известного дебита (соответственно кривые 1 и 3 на рис V ] 11.18). По кривой 3 оценивают предварительную глубину спуска насоса ( по допустимым значениям объемного газосодержания на приеме насоса

В вх=0,05 - 0.25 ) и давление Рвх ( по кривой I). Упомянутые пределы расходного газосодержания на входе в насос установлены по данным испытаний ЭЦН во время откачки газированной жидкости. Если Ввх=0 - 0,05, то газ слабо влияет на работу насоса, если Ввх=0,25 - 0.3 то происходит срыв подачи насоса. По кривым 1 и-2 на глубине спуска насоса определяют перепад давлений 1рсбуемый для получения заданного дебита

Рс=Рвык - Рвх Свойства жидкости и ее вязкость влияют на напорную характеристику насоса. Поэтому далее оцениваем подачу qb и напора Нвс, которые должен иметь подбираемый насос при откачке жидкости ( с учетом влияния на рабочую характеристику насоса свободно! о газа в ГЖС, проходящей через насос, и ее вязкости), чтобы обеспечить подъем заданного количества нефти Q жсу с выбранной глубины lh. Поданным qb и Нвс и паспортным характеристикам подбирают тип насоса, удовлетворяющий условиям 0,65£Qв/Qв опт£1,25, ( где qb.опт - паспортная подача насоса при оптимальном режиме) Нвс£Нпн -DН (где Нпв-напор насоса но паспортной характеристике, соответствующей производительности qbm, DН- поправка , для пересчета Нпв в вероятный напор при работе на воде) DН = 0,92Нв.опт/3,9+0,023Qв.опт ( где Нв.опт - оптимальный напор Qв.опт-оптимальный расход по паспортной характеристике. Выбранный насосный агрегат должен работать в условиях превышения необходимого пускового напора Ноcв над рабочим при откачке ГЖС.

Может оказаться что необходимая характеристика насоса по напору Н не соответствуют (ниже) паспортной характеристике насоса, ближайшею но параметрам. В этом случае напор выбранного насоса регулируют путем повышения противодавления на устье с помощью штуцера или уменьшением ( частичным изъятием) некоторого числа ступеней насоса с заменой их вкладышами. Если используют штуцер, то снижается к.п.д. установки, но при этом регулирование осуществляется проще (без разборки насоса). Также регулировать характеристики ЭЦН можно путем частотного регулирования электродвигателя насоса (частота вращения вала ПЭД пропорциональна частоте тока), в результате чего одновременно изменяются в широком диапазоне и напор и подача насоса. Частотное регулирование позволяет сократить необходимое число типоразмеров ЭЦН.

В станциях управления предусмотрены ручной и автоматический режимы работы. В ручном режиме после остановки УЭЦН (например, из-за аварийного отключения электроэнергии) повторно запустить насос в работу можно только вручную. В автоматическом же режиме предусмотрен самозапуск установки через некоторое время после возобновления подачи электроэнергии. Это удобно тем, что для запуска установок не надо ехать по всем скважинам. Однако в зимних условиях на месторождениях Крайнего Севера и Западной Сибири, когда существует опасность замерзания устьевой арматуры и выкидной линии скважины при остановке насоса, автоматический самозапуск нежелателен. Более предпочтительным здесь является ручной запуск установки. При этом оператор приезжает на скважину и включает насос в работу только после пропаривания устьевой арматуры и выкидной линии.

Для достижения поставленной цели сформулированы следующие задачи: 1. Рассмотреть перспективы и экономическую целесообразность применения регулируемого электропривода в структуре УЭЦН.

2. Сформулировать задачу оптимизации установившихся режимов работы УЭЦН с обоснованием критерия, параметров оптимизации и ограничений.

3. Провести системный1 анализ параметров; определяющих показатели работы УЭЦНи выявить наиболее значимые факторы.

4. Разработать математическую модель УЭЦН, учитывающую* основные технологические и технические параметры:

5. Разработать алгоритм; управления,, обеспечивающий оптимизацию установившихся режимов работы УЭЦН;.

6. Оценить, эффективность разработанного алгоритма путем имитационного моделирования и экспериментальных испытаний;на скважине.

УЭЦН

Под подбором УЭЦН понимается определение типоразмера установки, обеспечивающей заданную добычу пластовой жидкости из скважин при оптимальных рабочих показателях (подаче, напоре, мощности, наработке на отказ, КПД и пр.)

При этом максимальное содержание свободного газа у приема насоса не должно превышать 25 % для установок без газосепараторов, максимально допустимое давление в зоне подвески УЭЦН – не более 25 МПа, температура не более 90 0С. Темп набора кривизны скважины в зоне подвески насоса не более 3 мин. на 10 м. Вначале устанавливают необходимые исходные данные - выбирают уравнение притока, определяют свойства нефти газа и воды и их смесей, конструкцию эксплуатационной обсадной колонны, глубину спуска насоса находят с учетом расходного газосодержания нефтегазового потока на входе.

Производительность УЭЦН регулируется:

1. Методом штуцирования (на устье скважины)

2. При помощи преобразователя частоты:

3. При помощи изменения глубины подвески ЭЦН

4. Замена насосной установки

  1. Факторы коррозионного воздействия на трубопровод.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]