
- •Конспект лекций по дисциплине «химия»
- •Иркутск 2012 содержание
- •Введение
- •1. Основные понятия и законы химии Основные понятия
- •Основные законы
- •2. Классы неорганических соединений
- •3 Строение атома
- •Квантовые числа
- •Принципы распределения электронов в атоме
- •4. Периодический закон и периодическая система
- •Периодические свойства элементов
- •5. Энергетика химических процессов
- •Внутренняя энергия
- •Первое начало термодинамики. Энтальпия
- •Второе начало термодинамики. Энтропия
- •Энергия Гиббса
- •6. Скорость химической реакции
- •1. Природа реагирующих веществ.
- •2. Концентрация.
- •3. Температура.
- •4. Поверхность соприкосновения реагирующих веществ.
- •5. Катализаторы.
- •7. Химическое равновесие
- •Факторы, влияющие на смещение равновесия
- •1. Давление (характерно для газов).
- •2. Температура.
- •3. Концентрация.
- •4. Катализаторы.
- •8. Растворы
- •Энергетика процесса растворения
- •Растворимость
- •1. Природа растворяемого вещества.
- •2. Природа растворителя
- •3. Температура
- •4. Давление
- •9. Способы выражения концентрации растворов
- •10. Разбавленные растворы неэлектролитов
- •Давление пара растворов. Закон Рауля
- •Замерзание и кипение растворов
- •12. Растворы электролитов
- •Степень диссоциации
- •Слабые электролиты. Константа диссоциации
- •Кислоты, основания, соли с точки зрения теории электролитической диссоциации
- •Реакции обмена в растворах электролитов
- •Диссоциация воды. Водородный показатель
- •12. Гидролиз солей
- •13. Окислительно-восстановительные реакции
- •Важнейшие окислители и восстановители
- •Составление уравнений овр
- •Типы овр
- •14. Электродные потенциалы
- •Ряд напряжений металлов
- •Гальванические элементы
- •15. Коррозия металлов
- •Защита металлов от коррозии
- •16. Электролиз
- •Электролиз раствора CuCl2 с инертным анодом
- •Электролиз раствора NiSo4 с никелевым анодом
- •Законы электролиза
- •Библиографический список
16. Электролиз
Электролиз – совокупность процессов, происходящих при прохождении постоянного электрического тока через электрохимическую систему, состоящую из двух электродов и расплава или раствора электролита.
Сущность электролиза заключается в том, что при пропускании тока через раствор или расплав электролита положительно заряженные ионы перемещаются к катоду (отрицательному электроду), а отрицательно заряженные – к аноду (положительному электроду). Достигнув электродов, ионы разряжаются: у анода восстановитель отдает электроны (в сеть) и окисляется; у катода окислитель присоединяет электроны (из сети) и восстанавливается.
Например, при прохождении электрического тока через расплав MgCl2 катионы магния под действием электрического поля движутся к катоду и восстанавливаются на нем до металла:
Mg2+ + 2ē = Mg
Анионы хлора перемещаются к аноду и окисляются на нем с образованием молекул газообразного хлора:
2С1– – 2ē = С12
Суммарный процесс, протекающий при электролизе, выражается уравнением окислительно-восстановительной реакции:
Mg2+ + 2С1– = Mg + С12.
При электролизе водных растворов, кроме ионов электролита в окислительно-восстановительном процессе принимают участие молекулы воды.На катоде молекулы воды могут восстанавливаться:
2Н2О + 2ē = Н2 + 2ОН– (j = –0,41 В),
а на аноде – окисляться:
2Н2О – 4ē = 4Н+ + О2 (j = +1,23 В).
Характер катодного процесса при электролизе водных растворов определяется положением металла в ряду напряжений (табл. 8.1). На катоде в первую очередь восстанавливаются катионы, имеющие наибольшее значение электродного потенциала.
1. Если катионом электролита является металл, электродный потенциал которого значительно более отрицательный, чем –0,41 В, то на катоде металл восстанавливаться не будет, а произойдет восстановление молекул воды. Эти металлы расположены в ряду напряжений от Li по Al включительно.
2. Если катионом электролита является металл, электродный потенциал которого значительно положительнее, чем –0,41 В, то из нейтрального раствора такого электролита на катоде будет восстанавливаться металл. Такие металлы находятся в ряду напряжений вблизи водорода (примерно от олова и после него).
3. В случае ионов металлов, имеющих значения потенциала близкие к –0,41 В (Zn, Cr, Fe, Cd, Ni), в зависимости от концентрации электролита и условий электролиза, возможно как восстановление металла, так и выделение водорода, а нередко и их совместный разряд.
На аноде в первую очередь осуществляется окисление наиболее сильных восстановителей – ионов, имеющих меньшее значение электродного потенциала.
Электродный процесс |
Электродный потенциал φ,B |
2Br‾ - 2ē = Br2 |
1,065 |
2I‾ - 2ē = I2 |
0,536 |
S2- - 2ē = S |
-0,48 |
2Н2О – 4ē = 4Н+ + О2 |
1,23 |
2SO42- - 2ē = S2O82- |
2,01 |
Различают электролиз с инертным (нерастворимым) анодом и электролиз с активным (растворимым) анодом.
Инертный анод (графит, уголь, платина) не претерпевает окисления в ходе электролиза. При электролизе водных растворов щелочей, кислородсодержащих кислот (HNO3, H2SO4, H3PO4) и их солей (нитраты, сульфаты, ортофосфаты и др.), а также фтороводорода и фторидов на нем происходит электрохимическое окисление воды.
Если анионы электролита бескислородны (Сl–, Br–, I–, S2–), то они и разряжаются на аноде в ходе электролиза. Например, 2С1– – 2ē = С12.
Активный анод изготовлен из материала, который при электролизе может окисляться по схеме: М0 – nē = Mn+.
Рассмотрим несколько случаев электролиза водных растворов солей.