
- •1) Цепи постоянного тока. Основные понятия и определения. Топологические понятия тэц, напряжение, сила тока, сопротивление, единицы измерения.
- •2) Законы Ома и Кирхгофа для цепи постоянного тока.
- •3) Методы расчета электрических цепей. Метод непосредственного применения законов Кирхгофа.
- •4)Метод контурных токов
- •6)Метод эквивалентного генератора. Метод наложения
- •7) Теория цепей переменного тока. Мгновенное, действующее и амплитудное значение переменного тока, напряжения и эдс.
- •8 Формы представления синусоидальных величин. Комплексный метод расчета цепей переменного тока. Законы Ома и Кирхгофа в комплексной форме.
- •9 Резистор, катушка индуктивности и конденсатор в цепи переменного тока.
- •10 Последовательное соединение элементов я.Ь.С в цепи переменного тока.
- •15) Цепи со взаимной индуктивностью. Резонанс в индуктивно - связанных контурах.
- •Трехфазные цепи переменного тока. Получение трехфазной эдс.
- •Соединение фаз источника и приемника «звездой».
- •Соединение фаз источника и приемника «треугольником».
- •Магнитные цепи. Основные понятия и законы.
- •Основные уравнения трансформатора в рабочем режиме. Схема замещения.
- •24 Опыт холостого хода трансформатора. Опыт короткого замыкания трансформатора.
- •25. Внешние характеристики трансформатора. Потери и кпд трансформатора.
- •26. Асинхронная машина. Определение. Назначение. Конструкция. Основные параметры. Режимы работы асинхронной машины. Понятие скольжения.
- •27. Асинхронный двигатель. Т-и г-образная схема замещения. Основные уравнения двигателя в рабочем режиме.
- •28. Энергетические процессы в асинхронном двигателе. Баланс активной и реактивной мощности. Потери и кпд асинхронного электродвигателя.
- •29. Электромагнитные моменты асинхронного двигателя. Механическая характеристика.
- •30. Асинхронный двигатель. Рабочие характеристики. Пуск асинхронного электродвигателя. Регулирование частоты вращения двигателя. Тормозные режимы асинхронного двигателя.
- •Регулирование частоты вращения асинхронных двигателей
- •31. Машина постоянного тока. Конструкция. Назначение. Принцип действия дпт и гпт.
- •32. Характеристика холостого хода машины постоянного тока.
- •33. Реакция якоря и коммутация машины постоянного тока.
- •34. Работа машины постоянного тока в режиме двигателя. Основные характеристики.
- •35. Регулирование частоты вращения в дпт.
- •36. Работа машины постоянного тока в режиме генератора. Основные характеристики.
- •38. Способы возбуждения мпт. Характеристики мпт (гпт и дпт).
- •39. Синхронная машина. Назначение. Конструкция. Принцип действия.
- •40. Работа синхронной машины в режиме генератора.
- •41. Работа синхронной машины в режиме двигателя и компенсатора.
- •42. Классификация полупроводниковых приборов. Полупроводниковые резисторы.
- •43. Полупроводниковый диод. Основные параметры. Вах. Принцип работы
- •44. Неуправляемые полупроводниковые выпрямители. Однофазные и трехфазные.
- •45. Биполярный транзистор. Технологическое исполнение. Принцип действия. Уго. Схема замещения. Транзистор как источник тока. Режимы работы транзистора.
- •46. Схемы включения биполярного транзистора. Коэффициенты усиления транзистора при различных схемах его включения. Вах биполярного транзистора. Характеристические параметры транзистора.
- •47. Усилительный каскад. Назначение элементов. Принцип работы. Режимы работы усилительного каскада.
- •48. Усилители постоянного тока. Операционные усилители. Компаратор. Сумматор.
- •49. Полевые транзисторы. Тиристоры.
- •50. Логические элементы. Триггеры.
- •51) Электропроводимость, проводники, полупроводники, диэлектрики
- •52)Расчёт электрической цепи методом наложения.
- •53)Магнитная и диэлектрическая проницаемость
- •55) Преобразователи неэлектрических величин
- •Резистивные преобразователи
- •Индукционные преобразователи
- •Ёмкостные преобразователи
- •56)Величины магнитной цепи, закон полного тока
- •57)Логические элементы
- •58) Магнитный пускатель
- •59)Мостовой метод измерения
- •61) Нелинейные электрические цепи
24 Опыт холостого хода трансформатора. Опыт короткого замыкания трансформатора.
Холостым
ходом трансформатора является такой
предельный режим работы, когда его
вторичная обмотка разомкнута и ток
вторичной обмотки равен нулю (I2 = 0). Опыт
холостого хода позволяет определить
коэффициент трансформации, ток, потери
и сопротивление холостого хода
трансформатора. При опыте холостого
хода первичную обмотку однофазного
трансформатора включают в сеть переменного
тока на номинальное напряжение U1 (рис).
Под действием приложенного напряжения по обмотке протекает ток I1=I0 равный току холостого хода. Практически ток холостого хода равен примерно 5—10% номинального, а в трансформаторах малой мощности (десятки вольт-ампер) достигает значений 30% и более номинального. Для измерения тока холостого хода, приложенного к первичной обмотке напряжения и потребляемой мощности в цепь первичной обмотки трансформатора включены измерительные приборы (амперметр А, вольтметр V и ваттметр W). Вторичная обмотка трансформатора замкнута на вольтметр, сопротивление которого очень велико, так что ток вторичной обмотки практически равен нулю. Ток холостого хода возбуждает в магнитопроводе трансформатора магнитный поток, который индуктирует э. д. с. Е1 и Е2 в первичной и во вторичной обмотках. Во вторичной обмотке трансформатора нет тока и, следовательно, нет падения напряжения в сопротивлении этой обмотки, поэтому э. д. с. равна напряжению, т. е. Е2=1/2. Поэтому э. д. с. вторичной обмотки определяется показанием вольтметра, включенного в эту обмотку. Ток холостого хода, протекающий в первичной обмотке, очень мал по сравнению с номинальным, так что падение напряжения в сопротивлении первичной обмотки очень мало по сравнению с приложенным напряжением. Поэтому приложенное напряжение практически уравновешивается э. д. с. первичной обмотки и численные значения напряжения V и э. д. с. Е приблизительно равны. Следовательно, при опыте холостого хода э. д. с. первичной обмотки определится показанием вольтметра, включенного в ее цепь.
25. Внешние характеристики трансформатора. Потери и кпд трансформатора.
Зависимость U2 = f (I2)
или U2 = f (β)
называют внешней характеристикой
трансформатора. Коэффициент
называется
коэффициентом загрузки трансформатора,
где I2 –
ток вторичной обмотки трансформатора; I2Н –
номинальный ток вторичной
обмотки.Электрические
потери определяются величиной активного
сопротивления и квадрата тока
соответствующей обмотки. Потери в
магнитопроводе зависят от марки стали,
частоты сети, магнитной индукции в
сердечнике трансформатора. В паспорте
трансформатора приводится мощность
потерь холостого хода Р0 и
короткого замыкания РК,
которые приблизительно равны (при
номинальной нагрузке)Р0 = рстРК = рЭЛ.1 + рЭЛ.2.Для
расчёта КПД удобно пользоваться
выражением
где SH - номинальная мощность трансформатора в кВА, РК и Р0 в кВт. Задаваясь значениями β = от 0 до 1 (от холостого хода до номинальной нагрузки), строят графическую зависимость η = f(β), рис. 1.4, б. КПД силовых трансформаторов достигает максимального значения при коэффициенте загрузки βmax = 0,45…0,6. КПД современных силовых трансформаторов находится в пределах 0,95…0,99.