
- •1) Цепи постоянного тока. Основные понятия и определения. Топологические понятия тэц, напряжение, сила тока, сопротивление, единицы измерения.
- •2) Законы Ома и Кирхгофа для цепи постоянного тока.
- •3) Методы расчета электрических цепей. Метод непосредственного применения законов Кирхгофа.
- •4)Метод контурных токов
- •6)Метод эквивалентного генератора. Метод наложения
- •7) Теория цепей переменного тока. Мгновенное, действующее и амплитудное значение переменного тока, напряжения и эдс.
- •8 Формы представления синусоидальных величин. Комплексный метод расчета цепей переменного тока. Законы Ома и Кирхгофа в комплексной форме.
- •9 Резистор, катушка индуктивности и конденсатор в цепи переменного тока.
- •10 Последовательное соединение элементов я.Ь.С в цепи переменного тока.
- •15) Цепи со взаимной индуктивностью. Резонанс в индуктивно - связанных контурах.
- •Трехфазные цепи переменного тока. Получение трехфазной эдс.
- •Соединение фаз источника и приемника «звездой».
- •Соединение фаз источника и приемника «треугольником».
- •Магнитные цепи. Основные понятия и законы.
- •Основные уравнения трансформатора в рабочем режиме. Схема замещения.
- •24 Опыт холостого хода трансформатора. Опыт короткого замыкания трансформатора.
- •25. Внешние характеристики трансформатора. Потери и кпд трансформатора.
- •26. Асинхронная машина. Определение. Назначение. Конструкция. Основные параметры. Режимы работы асинхронной машины. Понятие скольжения.
- •27. Асинхронный двигатель. Т-и г-образная схема замещения. Основные уравнения двигателя в рабочем режиме.
- •28. Энергетические процессы в асинхронном двигателе. Баланс активной и реактивной мощности. Потери и кпд асинхронного электродвигателя.
- •29. Электромагнитные моменты асинхронного двигателя. Механическая характеристика.
- •30. Асинхронный двигатель. Рабочие характеристики. Пуск асинхронного электродвигателя. Регулирование частоты вращения двигателя. Тормозные режимы асинхронного двигателя.
- •Регулирование частоты вращения асинхронных двигателей
- •31. Машина постоянного тока. Конструкция. Назначение. Принцип действия дпт и гпт.
- •32. Характеристика холостого хода машины постоянного тока.
- •33. Реакция якоря и коммутация машины постоянного тока.
- •34. Работа машины постоянного тока в режиме двигателя. Основные характеристики.
- •35. Регулирование частоты вращения в дпт.
- •36. Работа машины постоянного тока в режиме генератора. Основные характеристики.
- •38. Способы возбуждения мпт. Характеристики мпт (гпт и дпт).
- •39. Синхронная машина. Назначение. Конструкция. Принцип действия.
- •40. Работа синхронной машины в режиме генератора.
- •41. Работа синхронной машины в режиме двигателя и компенсатора.
- •42. Классификация полупроводниковых приборов. Полупроводниковые резисторы.
- •43. Полупроводниковый диод. Основные параметры. Вах. Принцип работы
- •44. Неуправляемые полупроводниковые выпрямители. Однофазные и трехфазные.
- •45. Биполярный транзистор. Технологическое исполнение. Принцип действия. Уго. Схема замещения. Транзистор как источник тока. Режимы работы транзистора.
- •46. Схемы включения биполярного транзистора. Коэффициенты усиления транзистора при различных схемах его включения. Вах биполярного транзистора. Характеристические параметры транзистора.
- •47. Усилительный каскад. Назначение элементов. Принцип работы. Режимы работы усилительного каскада.
- •48. Усилители постоянного тока. Операционные усилители. Компаратор. Сумматор.
- •49. Полевые транзисторы. Тиристоры.
- •50. Логические элементы. Триггеры.
- •51) Электропроводимость, проводники, полупроводники, диэлектрики
- •52)Расчёт электрической цепи методом наложения.
- •53)Магнитная и диэлектрическая проницаемость
- •55) Преобразователи неэлектрических величин
- •Резистивные преобразователи
- •Индукционные преобразователи
- •Ёмкостные преобразователи
- •56)Величины магнитной цепи, закон полного тока
- •57)Логические элементы
- •58) Магнитный пускатель
- •59)Мостовой метод измерения
- •61) Нелинейные электрические цепи
Соединение фаз источника и приемника «треугольником».
Кроме
соединения звездой, генераторы,
трансформаторы, двигатели и другие
потребители трехфазного тока могут
включаться треугольником. При соединении
треугольником Uл = Uф, потому что каждые
два линейных провода присоединены к
началу и концу одной из фазных обмоток,
а все фазные обмотки одинаковы. Линейные
токи Iл = √3Iф. Мощность трёхфазной системы
не зависит от схемы соединения (звездой
или треугольником) и определяется
выражениями: Полная
.
Активная
[Вт].
Реактивная
[ВАР].
где j
- угол сдвига фаз между напряжением и
током.
Соединение треугольником выполняется таким образом чтобы конец фазы А был соединен с началом фазы В, конец фазы В соединен с началом фазы С и конец фазы С соединен с началом фазы А. К местам соединения фаз присоединяют линейные провода. Если обмотки генератора соединены треугольником, то линейное напряжение создает каждая линейная обмотка. У потребителя, соединенного треугольником, линейное напряжение подключается к зажимам фазного сопротивления. Следовательно, при соединении треугольником фазное напряжение равно линейному: Uл=Uф.
Магнитные цепи. Основные понятия и законы.
Магнитная
цепь —
последовательность взаимосвязанных магнетиков,
по которым проходитмагнитный
поток.[1]
При решении электротехнических задач
все вещества в магнитном отношении
делятся на две группы:ферромагнитные (относительная
магнитная проницаемость
);неферромагнитные (относительная
магнитная проницаемость
).
Для концентрации магнитного поля и
придания ему желаемой конфигурации
отдельные части электротехнических
устройств выполняются из ферромагнитных
материалов. Эти части
называютмагнитопроводами или сердечниками. Магнитный
поток создается токами, протекающими
по обмоткам электротехнических устройств,
реже – постоянными магнитами. Совокупность
устройств, содержащих ферромагнитные
тела и образующих замкнутую цепь, вдоль
которой замыкаются линии магнитной
индукции, называют магнитной
цепью.
Магнитный гистерезис |
Явление отставания изменения магнитной индукции B от изменения напряженности магнитного поля H |
||
Наименование закона |
Аналитическое выражение закона |
Формулировка закона |
|
Закон (принцип) непрерывности магнитного потока |
|
Поток вектора магнитной индукции через замкнутую поверхность равен нулю |
|
Закон полного тока |
|
Циркуляция вектора напряженности вдоль произвольного контура равна алгебраической сумме токов, охватываемых этим контуром |
21 Трансформатор. Определение. Назначение. Конструкция. Основные параметры. Принцип действия. Трансформа́тор — электрический аппарат, предназначенный для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока без изменения частоты систем(системы) переменного тока [1].
Трансформатор состоит: из замкнутого сердечника, собранного из листовой трансформаторной стали, на котором располагаются две или несколько обмоток - изолированного провода. Обмотки, подключаемые к источнику тока, называется первичной, а обмотка, с которой снимается напряжение - вторичной. У трехобмоточного трансформатора имеются две вторичные обмотки, что дает возможность получить два различных напряжения. Сердечник делается из листов электротехнической стали толщиной 0,35 мм - 0,5 мм и служит магнитопроводом трансформатора. Для уменьшения вихревых токов, а следовательно, и потерь в стали листы сердечника изолируются лаком. В зависимости от формы сердечника однофазные трансформаторы бывают стержневые и броневые.
Принцип действия трансформатора : Действие трансформатора основано на явлении электромагнитной индукции. Если первичную обмотку трансформатора включить в сеть источника переменного тока, то по ней будет протекать переменный ток I0 (ток холостого хода), который возбудит в сердечнике трансформатора переменный магнитный поток. Магнитный поток, пронизывая витки вторичной обмотки трансформатора, будет индуктировать в этой обмотке э. д. с. Если вторичную обмотку замкнуть на какой-либо приемник энергии (на рис. 98 — лампа накаливания), то под действием индуктируемой э. д. с. Е2 по этой обмотке и через приемник энергии будет протекать ток I2. Одновременно и в первичной обмотке появится нагрузочный ток I', который в сумме с током холостого хода I0 определит ток первичной обмотки I1. Таким образом, электрическая энергия, трансформируясь, будет передаваться из первичной сети во вторичную, но при другом напряжении, на которое рассчитан приемник энергии, включенный во вторичную сеть.