
- •Предмет физики. Предмет механики. Физические модели. Материальная точка. Абсолютно твердое тело. Системы отсчета.
- •Координатное и векторное описание положения частицы. Связь между ними
- •Скорость и ускорение материальной точки.
- •Равнопеременное движение.
- •Нормальное, тангенциальное и полное ускорения. Радиус кривизны траектории.
- •Поступательное и вращательное движение. Кинематика поступательного движения. Связь угловых и линейных характеристик движения.
- •Плоское движение
- •Механический принцип относительности. Инерциальные системы отсчета. Первый закон Ньютона.
- •Преобразования Галилея. Закон сложения скоростей Галилея.
- •Второй закон Ньютона. Сила. Импульс.
- •11.Принцип суперпозиции сил. Третий закон Ньютона.
- •12. Силы инерции. Принцип эквивалентности.
- •Измерения. Системы единиц. Внесистемные единицы. Размерности физических величин.
- •Работа и энергия. Мощность.
- •Консервативные силы. Потенциальные поля.
- •Потенциальная энергия. Связь силы и потенциальной энергии.
- •Силы в механике. Упругая сила.
- •Сила гравитационного притяжения. Однородная сила тяжести.
- •Сухое трение. Вязкое трение.
- •Закон сохранения механической энергии. Границы одномерного движения.
- •Закон сохранения импульса и его связь с однородностью пространства.
- •Абсолютно неупругий удар.
- •Абсолютно упругий удар.
- •Момент импульса и закон его сохранения.
- •Связь закона сохранения момента импульса с изотропностью пространства.
- •Кинетическая энергия вращающегося тела. Расчет момента инерции полого цилиндра.
- •Теорема Штейнера.
- •Динамика вращательного движения системы материальных точек относительно неподвижной оси.
- •Кинетическая энергия плоского движение твердого тела.
- •Равнодействующая сила. Центр тяжести.
- •Лоренцево замедление времени.
- •Лоренцево сокращение длин.
- •Преобразования Лоренца
- •Интервал и его инвариантность.
- •Релятивистский импульс. Основное уравнение релятивисткой динамики.
- •Кинетическая энергия релятивистской частицы. Взаимосвязь массы и энергии. Энергия покоя.
- •2 Тема.
- •1. Потенциальная энергия взаимодействия молекул. Модель идеального газа.
- •2. Жидкость. Кристаллическая решетка.
- •3. Молярная масса и число Авогадро.
- •4. Статистические ансамбли. Средние значения и среднеквадратичные отклонения.
- •6. Идеальный газ. Давление идеального газа.
- •8. Изопроцессы в идеальном газе.
- •9. Закон равнораспределения энергии по степеням свободы молекул в газе.
- •10. Внутренняя энергия. Внутренняя энергия идеального газа.
- •11. Механическая работа в тепловых процессах.
- •12. Первое начало термодинамики
- •1 3. Круговые процессы и тепловые двигатели. К.П.Д. Теплового двигателя.
- •14. Теплоемкость. Теплоемкость при постоянном давлении и теплоемкость при постоянном объеме. Уравнение Майера.
- •15. Работа в адиабатном процессе
- •16. Уравнение Пуассона.
- •17. Энтропия и ее статистический смысл.
- •18. Энтропия идеального газа.
- •19. Изменение энтропии в квазиравновесных процессах.
- •20. К.П.Д. Идеального цикла Карно.
- •21. Второе начало термодинамики (закон возрастания энтропии). Теорема Нернста.
- •22.Распределение Больцмана частиц в потенциальном поле.
- •23. Барометрическая формула.
- •24. Распределение Максвелла по скоростям.
- •25. Распределение Максвелла по модулю скорости.
- •26.Опыт Штерна.
- •27. Явления переноса. Опытные законы диффузии, теплопроводности и внутреннего трения.
15. Работа в адиабатном процессе
Адиабати́ческий — термодинамический процесс в макроскопической системе, при котором система не получает и не отдаёт тепловой энергии.
Поясним
понятие работы применительно к
адиабатическому процессу. В частном
случае, когда работа совершается через
изменение объёма, можно определить её
следующим способом: пусть газ заключён
в цилиндрический сосуд, плотно закрытый
легко скользящим поршнем, если газ будет
расширяться, то он будет перемещать
поршень и при перемещении на отрезок
dh
совершать работу
где F — сила, с которой газ действует на
поршень. Перепишем уравнение:
где s — площадь поршня. Тогда работа
будет равна
где
— давление газа, dV
— малое приращение объёма. Аналогично
видно, что уравнение выполняется и для
сосудов с произвольной поперечной
формой сечения. Данное уравнение
справедливо и при расширении на
произвольных объёмах. Для этого достаточно
разбить поверхность расширения на
элементарные участки dS
на которых расширение одинаково.
Основное
уравнение термодинамики примет вид:
(1)
Это условие будет выполняться, если скорость хода поршня (протекания процесса в общем случае) будет удовлетворять определённым условиям. С одной стороны она должна быть достаточно малой, чтобы процесс можно было считать квазистатическим. Иначе при резком изменении хода поршня давление, которое его перемещает, будет отличаться от давления в целом по газу. То есть газ должен находиться в равновесии, без турбулентностей и неоднородностей давления и температуры. Для этого достаточно передвигать поршень со скоростью, существенно меньшей, чем скорость звука в данном газе. С другой стороны скорость должна быть достаточно большой, чтобы можно было пренебречь обменом теплом с окружающей средой и процесс оставался адиабатическим.
Однако
работа может совершаться и другими
путями — например, идти на преодоление
межмолекулярного притяжения газов. В
этом случае параллельно с изменением
внутренней энергии будет происходить
процессы совершения нескольких работ
разной физической природы, и основное
уравнение термодинамики примет вид:
(1а)
где Ai, dai — дифференциальное выражение для работы, ai — внешние параметры, которые меняются при совершении работы, Ai — соответствующие им внутренние параметры, которые при совершении малой работы можно считать постоянными. При совершении работы путём сжатия или расширения внутренний параметр — давление. Внешний параметр — объём.
16. Уравнение Пуассона.
Уравне́ние Пуассо́на — эллиптическое дифференциальное уравнение в частных производных, которое, среди прочего, описывает электростатическое поле, стационарное поле температуры, поле давления, поле потенциала скорости в гидродинамике.
Оно названо в честь знаменитого французского физика и математика Симеона Дени Пуассона.
Это уравнение имеет вид: Δφ = f,где Δ — оператор Лапласа или лапласиан, а f — вещественная или комплексная функция на некотором многообразии.
В
трёхмерной декартовой системе координат
уравнение принимает форму:
В
декартовой системе координат оператор
Лапласа записывается в форме
и уравнение Пуассона принимает вид:
Если f стремится к нулю, то уравнение Пуассона превращается в уравнение Лапласа (уравнение Лапласа — частный случай уравнения Пуассона): Δφ = 0.
Уравнение
Пуассона является одним из краеугольных
камней электростатики. Нахождение φ
для данного f
— важная практическая задача, поскольку
это обычный путь для нахождения
электростатического потенциала для
данного распределения заряда. В единицах
системы СИ:
где
— электростатический потенциал (в
вольтах),
— объёмная плотность заряда (в кулонах
на кубический метр), а
— диэлектрическая проницаемость вакуума
(в фарадах на метр).
В
единицах системы СГС:
В
области пространства, где нет непарной
плотности заряда, имеем:
и уравнение для потенциала превращается
в уравнение Лапласа: