
- •Предмет физики. Предмет механики. Физические модели. Материальная точка. Абсолютно твердое тело. Системы отсчета.
- •Координатное и векторное описание положения частицы. Связь между ними
- •Скорость и ускорение материальной точки.
- •Равнопеременное движение.
- •Нормальное, тангенциальное и полное ускорения. Радиус кривизны траектории.
- •Поступательное и вращательное движение. Кинематика поступательного движения. Связь угловых и линейных характеристик движения.
- •Плоское движение
- •Механический принцип относительности. Инерциальные системы отсчета. Первый закон Ньютона.
- •Преобразования Галилея. Закон сложения скоростей Галилея.
- •Второй закон Ньютона. Сила. Импульс.
- •11.Принцип суперпозиции сил. Третий закон Ньютона.
- •12. Силы инерции. Принцип эквивалентности.
- •Измерения. Системы единиц. Внесистемные единицы. Размерности физических величин.
- •Работа и энергия. Мощность.
- •Консервативные силы. Потенциальные поля.
- •Потенциальная энергия. Связь силы и потенциальной энергии.
- •Силы в механике. Упругая сила.
- •Сила гравитационного притяжения. Однородная сила тяжести.
- •Сухое трение. Вязкое трение.
- •Закон сохранения механической энергии. Границы одномерного движения.
- •Закон сохранения импульса и его связь с однородностью пространства.
- •Абсолютно неупругий удар.
- •Абсолютно упругий удар.
- •Момент импульса и закон его сохранения.
- •Связь закона сохранения момента импульса с изотропностью пространства.
- •Кинетическая энергия вращающегося тела. Расчет момента инерции полого цилиндра.
- •Теорема Штейнера.
- •Динамика вращательного движения системы материальных точек относительно неподвижной оси.
- •Кинетическая энергия плоского движение твердого тела.
- •Равнодействующая сила. Центр тяжести.
- •Лоренцево замедление времени.
- •Лоренцево сокращение длин.
- •Преобразования Лоренца
- •Интервал и его инвариантность.
- •Релятивистский импульс. Основное уравнение релятивисткой динамики.
- •Кинетическая энергия релятивистской частицы. Взаимосвязь массы и энергии. Энергия покоя.
- •2 Тема.
- •1. Потенциальная энергия взаимодействия молекул. Модель идеального газа.
- •2. Жидкость. Кристаллическая решетка.
- •3. Молярная масса и число Авогадро.
- •4. Статистические ансамбли. Средние значения и среднеквадратичные отклонения.
- •6. Идеальный газ. Давление идеального газа.
- •8. Изопроцессы в идеальном газе.
- •9. Закон равнораспределения энергии по степеням свободы молекул в газе.
- •10. Внутренняя энергия. Внутренняя энергия идеального газа.
- •11. Механическая работа в тепловых процессах.
- •12. Первое начало термодинамики
- •1 3. Круговые процессы и тепловые двигатели. К.П.Д. Теплового двигателя.
- •14. Теплоемкость. Теплоемкость при постоянном давлении и теплоемкость при постоянном объеме. Уравнение Майера.
- •15. Работа в адиабатном процессе
- •16. Уравнение Пуассона.
- •17. Энтропия и ее статистический смысл.
- •18. Энтропия идеального газа.
- •19. Изменение энтропии в квазиравновесных процессах.
- •20. К.П.Д. Идеального цикла Карно.
- •21. Второе начало термодинамики (закон возрастания энтропии). Теорема Нернста.
- •22.Распределение Больцмана частиц в потенциальном поле.
- •23. Барометрическая формула.
- •24. Распределение Максвелла по скоростям.
- •25. Распределение Максвелла по модулю скорости.
- •26.Опыт Штерна.
- •27. Явления переноса. Опытные законы диффузии, теплопроводности и внутреннего трения.
12. Первое начало термодинамики
ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ, один из осн. законов термодинамики; является законом сохранения энергии для систем, в к-рых существ, значение имеют тепловые процессы (поглощение или выделение тепла). Согласно первому началу термодинамики, термодинамич. система (напр., пар в тепловой машине) может совершать работу только за счет своей внутр. энергии или к.-л. внеш. источника энергии. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, к-рый совершал бы работу, не черпая энергию из нек-рого источника.
Первое начало термодинамики вводит представление о внутренней энергии системы как ф-ции состояния. При сообщении системе нек-рого кол-ва теплоты Q происходит изменение внутр. энергии системы DU и система совершает работу А: DU = Q + А.
Первое
начало термодинамики утверждает, что
каждое состояние системы характеризуется
определенным значением внутр. энергии
U, независимо от того, каким путем
приведена система в данное состояние.
В отличие от значений U значения A и Q
зависят от процесса, приведшего к
изменению состояния системы. Если
начальное и конечное состояния a и b
бесконечно близки (переходы между такими
состояниями наз. инфи-нитезимальными
процессами), первое начало термодинамики
записывается в виде:
Это
означает, что бесконечно малое изменение
внутр. энергии dU
является полным дифференциалом ф-ции
состояния, т.е. интеграл
= Ub
- Ua
, тогда как бесконечно малые кол-ва
теплоты
и работы
не являются дифференц. величинами, т.е.
интегралы от этих бесконечно малых
величин зависят от выбранного пути
перехода между состояниями а и b
(иногда их наз. неполными дифференциалами).
Из
общего кол-ва работы, производимой
системой объема У, можно выделить работу
обратимого изотермич. расширения под
действием внеш. давления pe
,
равную peV,
и все остальные виды работы, каждый из
к-рых можно представить произведением
нек-рой обобщенной силы
,
действующей на систему со стороны
окружающей среды, на обобщенную координату
xi
,
изменяющуюся под воздействием
соответствующей обобщенной силы. Для
инфинитези-мального процесса
Первое начало термодинамики позволяет рассчитать макс. работу, получаемую при изотермич. расширении идеального газа, изотермич. испарении жидкости при пост. давлении, устанавливать законы адиабатич. расширения газов и др. Первое начало термодинамики является основой термохимии, рассматривающей системы, в к-рых теплота поглощается или выделяется в результате хим. р-ций, фазовых превращ. или растворения (разбавления р-ров).
Если
система обменивается со средой не только
энергией, но и в-вом (см. Открытая система),
изменение внутр. энергии системы при
переходе из начального состояния в
конечное включает помимо работы А и
теплоты Q еще и т. наз. энергию массы Z.
Бесконечно малое кол-во энергии массы
в инфинитезимальном процессе определяется
хим. потенциалами mk
каждого из компонентов системы:
=
,
где dN
внизу k
- бесконечно малое изменение числа молей
k-гo
компонента в результате обмена со
средой. В случае квазистатич. процесса,
при к-ром система в каждый момент времени
находится в равновесии с окружающей
средой, первое начало термодинамики в
общем виде имеет след. мат. выражение:
где p и mk равны соответствующим значениям для окружающей среды (индекс е при Xi обычно опускают). Это выражение используется в прикладной термодинамике применительно к системам, в к-рых производится работа хим., электрич., магн. и т.п. сил.
Первое начало термодинамики было сформулировано в сер. 19 в. в результате работ Ю. P. Майера, Дж. Джоуля и Г. Гельмгольца. Вместе со вторым началом термодинамики оно составляет основу классич. термодинамики. В 60-х гг. 20 в. сформулирован фундам. закон устойчивого равновесия систем (Д. Хацо-пулос, Д. Кинан, P. Хейвуд), следствиями к-рого являются как первое начало термодинамики, так и второе начало.