
- •1)Предмет и место теоретической механики среди общеинженерных с специальных дисциплин:
- •2)Теоретическая механика как наука о наиболее общих законах механического движения материальных объектов.
- •3)Структура курса теоретической механики: статика, кинематика, динамика.
- •4)Кинематика, как раздел теоретической механики, изучающий движение материальных объектов с чисто геометрической точки зрения.
- •5)Кинематика точки. Основные задачи кинематики материальной точки.
- •6)Способы задания движения материальной точки в векторной, координатной и естественной формах. Уравнения (законы) движения точки.
- •7)Определение траектории движения точки по ее уравнениям движения в координатной форме. Связь между векторным, координатным и естественным способами задания движения точки.
- •10) Естественный (натуральный) трехгранник, вектор ускорения точки при естественном способе задания ее движения. Касательное и нормальное ускорение точки.
- •11)Равномерное и равнопеременное движение точки. Уравнения этих движений.
- •12)Сложное (составное)движение точки. Абсолютное, переносное и относительное движение точки.
- •13)Определение вектора абсолютной скорости точки при сложном движении.
- •14)Определение вектора абсолютного ускорения точки при сложном движении.
- •15)Кинематика твердого тела. Основные задачи кинематики твердого тела.
- •16)Поступательное движение твердого тела. Скорости и ускорения точек твердого тела при его поступательном движении.
- •17)Вращение твердого тела вокруг неподвижной оси. Уравнение вращения. Векторы угловой скорости и углового ускорения.
- •18)Равномерное и равнопеременное вращение твердого тела вокруг неподвижной оси. Законы этих вращений.
- •19)Скорости отдельных точек твердого тела при его вращении вокруг неподвижной оси. Передаточные отношения механических передач. Скорости и ускорения точек вращающегося тела.
- •20)Ускорение отдельных точек тела при его вращении вокруг неподвижной оси.
- •21)Плоскопараллельное движение твердого тела и движение плоской фигуры в своей плоскости. Уравнение (закон) плоского движения.
- •22)Угловая скорость и угловое ускорение твердого тела при плоском движении. Независимость угловой скорости и углового ускорения от выбора полюса.
- •23)Вектор скорости отдельных точек твердого тела при плоском движении.
- •24)Определение векторов скоростей отдельных точек твердого тела при плоском движении с помощью мгновенного центра скоростей. Мгновенный центр вращения.
- •25)Теорема о проекции векторов двух точек твердого тела при плоском движении на прямую, соединяющие эти точки.
- •26)Вектор ускорения отдельных точек твердого тела при плоском движении. Мгновенный центр ускорений.
- •31. Векторы угловой скорости и углового ускорения свободного твердого тела.
- •32. Вектор скорости и ускорения отдельных точек свободного твердого тела.
- •33. Сложное (составное ) движение твердого тела. Сложение поступательных движений.
- •34. Сложение вращений твердого тела вокруг параллельных пересекающихся осей.
- •35. Пара вращений. Дифференциальные и планетарные механизмы.
- •36. Динамика как раздел теоретической механики.
- •37. Структура раздела динамики: динамика точки, системы материальных точек твердого тела, системы твердых сил.
- •38. Второй закон Ньютона. Инерциальные системы отчета. Границы применимости законов динамики.
- •39. Две основные задачи динамики.
- •40. Динамика материальной точки. Дифференциальные уравнения движения точки в векторной, координатной и естественной форме.
- •41. Решение двух основных задач динамики материальной точки.
- •42. Прямолинейные колебательные движения материальной точки. Свободные колебания. Затухающие колебания.
- •43. Вынужденные прямолинейные колебания материальной точки. Резонанс.
- •44. Несвободное движение точки. Связи, налагаемые на движение точки и их классификация.
- •47. Относительное движение материальной точки.
- •48. Динамика системы материальных точек, масса системы. Силы внутренние и внешние.
- •49. Влияние распределения массы системы материальных точек на её движения. Характеристики распределения масс системы материальных точек
- •50.Цент масс системы материальных точек. Моменты инерции системы.
- •51. Тензор инерции. Главные оси и главные моменты инерции.
- •52. Общие теоремы динамики и их назначение.
- •53. Вектор количества движения материальной точки.
- •54. Теорема об изменении вектора количества движении системы материальных точек и точки. Законы сохранения вектора кол-ва движения.
- •55. Движение тел переменной массы. Уравнение Мещерского.
- •56. Вектор момента количества движений материальной точки и системы материальных точек.
- •57. Теорема об изменении вектора момента количества движения материальной системы и точки.
- •58. Работа силы. Мощность.
- •59. Кинетическая энергия материальной точки. Кинетическая энергия твердого тела в различных случаях его движения.
- •60. Теоремы об изменении кинетической энергии материальной точки.
- •61. Силовое потенциальное поле. Потенциальная энергия. Закон сохранения механической энергии.
- •62. Динамика твердого тела. Дифференциальные уравнения поступательного движения твердого тела.
- •63. Дифференциальные уравнения вращения твердого тела вокруг неподвижной оси. Экспериментальное определение моментов инерции твердого тела.
- •64. Дифференциальные уравнения плоского движения твердого тела.
- •65. Понятия о гироскопах. Основные свойства гироскопов.
- •69. Явление удара. Прямой центральный удар. Действие ударных сил на твердое тело, вращающее вокруг неподвижной оси.
13)Определение вектора абсолютной скорости точки при сложном движении.
Здесь
мы рассмотрим как вычисляется абсолютная
скорость точки, участвующей в сложном
движении, доказав при этом теорему об
абсолютной производной вектора.
Положение точки M и начала подвижной системы координат точки A в неподвижной системе координат определим радиус-векторами r и rA, положение точкиM в подвижной системе координат определим радиус-вектором ρ, который известен в проекциях на оси подвижной системы координат, т.е. ρ = x1i1 + y1j1 + z1k1. На рис. 105 мы видим, что r = rA + ρ. Аналогичное выражение было получено и для движения свободного твердого тела (п. 40). Однако в нашем случае точка Mсвободно перемещается в подвижной системе координат, ее радиус-вектор изменяется не только по направлению, но и по величине: ρ <>const.
Дифференцируя по времени выражение r находим абсолютную скорость точки, которая характеризует быстроту изменения положения точки в неподвижной системе координат:
|
(1) |
где A - абсолютная скорость начала подвижной системы координат; dρ / dt является производной вектора ρ, известного в подвижной системе координат, которую находят в неподвижной системе координат и называют абсолютной производной вектора ρ.
Найдем абсолютную производную вектора ρ:
|
(2) |
Учитывая, что единичные векторы подвижной системы координат изменяют свое направление в пространстве, но постоянны по величине, используем формулу Эйлера для вычисления их производных, согласно которой
где ω - угловая скорость вращения подвижной системы координат в неподвижной. Поэтому сумма последних трех слагаемых в (2) равна
|
(3) |
Первые три слагаемых в (2) характеризуют быстроту изменения вектора ρ в подвижной системе координат и их сумма называется относительной или локальной производной:
|
(4) |
Подставляя выражения (3) и (4) в (2), получаем
|
(5) |
Заметим, что если ρ = const, из (4) следует равенство нулю относительной производной вектора ρ, а из (5) получается формула Эйлера.
То есть мы показали справедливость формулы Эйлера и для векторов постоянных по величине, известных в произвольно двигающихся системах координат, так как здесь на движение подвижной системы координат никакие ограничения не накладывались.
Выражение (5) можно распространить и на любой другой вектор, известный в подвижной системе координат, например, b :
|
(6) |
а затем сформулировать теорему об абсолютной производной вектора, которую иногда называют теоремой о локальной производной.
Абсолютная производная вектора равна сумме относительной (локальной) производной вектора и векторного произведения угловой скорости подвижной системы координат на сам этот вектор.
Вернемся к доказательству теоремы о сложении скоростей. Относительная производная в (5) характеризует быстроту изменения положения точки M в подвижной системе координат и является по понятиям сложного движения точки ее относительной скоростью, а угловая скорость подвижной системы координат является угловой скоростью переносного движения, то есть
|
(7) |
Подставляя (7) в выражение (1), имеем
|
(8) |
Выделим переносную скорость точки, используя прием замораживания. Тогда после останова точки ее относительная скорость равна нулю Vr = 0, а абсолютная скорость равна ее переносной скорости V = Ve, так как остановленная в относительном движении точка (вмороженная в подвижную систему координат) продолжает перемещаться в неподвижной системе координат за счет переносного движения подвижной системы координат. Учитывая это, из выражения (8) имеем
|
(9) |
Сравнивая выражение (9) с формулами (2) в п. 35 и (4) в п. 40 для плоского движения твердого тела и движения свободного твердого тела, мы видим, что переносная скорость материальной точки представляет собой скорость той точки подвижной системы координат, где в данный момент времени находится (вморожена) материальная точка.
Подставляя (9) в (8) получаем математическую запись теоремы о сложении скоростей точек:
|
(10) |
Откуда следует формулировка теоремы.
Абсолютная скорость точки, участвующей в сложном движении, равна геометрической сумме ее относительной и переносной скоростей.