
- •1)Предмет и место теоретической механики среди общеинженерных с специальных дисциплин:
- •2)Теоретическая механика как наука о наиболее общих законах механического движения материальных объектов.
- •3)Структура курса теоретической механики: статика, кинематика, динамика.
- •4)Кинематика, как раздел теоретической механики, изучающий движение материальных объектов с чисто геометрической точки зрения.
- •5)Кинематика точки. Основные задачи кинематики материальной точки.
- •6)Способы задания движения материальной точки в векторной, координатной и естественной формах. Уравнения (законы) движения точки.
- •7)Определение траектории движения точки по ее уравнениям движения в координатной форме. Связь между векторным, координатным и естественным способами задания движения точки.
- •10) Естественный (натуральный) трехгранник, вектор ускорения точки при естественном способе задания ее движения. Касательное и нормальное ускорение точки.
- •11)Равномерное и равнопеременное движение точки. Уравнения этих движений.
- •12)Сложное (составное)движение точки. Абсолютное, переносное и относительное движение точки.
- •13)Определение вектора абсолютной скорости точки при сложном движении.
- •14)Определение вектора абсолютного ускорения точки при сложном движении.
- •15)Кинематика твердого тела. Основные задачи кинематики твердого тела.
- •16)Поступательное движение твердого тела. Скорости и ускорения точек твердого тела при его поступательном движении.
- •17)Вращение твердого тела вокруг неподвижной оси. Уравнение вращения. Векторы угловой скорости и углового ускорения.
- •18)Равномерное и равнопеременное вращение твердого тела вокруг неподвижной оси. Законы этих вращений.
- •19)Скорости отдельных точек твердого тела при его вращении вокруг неподвижной оси. Передаточные отношения механических передач. Скорости и ускорения точек вращающегося тела.
- •20)Ускорение отдельных точек тела при его вращении вокруг неподвижной оси.
- •21)Плоскопараллельное движение твердого тела и движение плоской фигуры в своей плоскости. Уравнение (закон) плоского движения.
- •22)Угловая скорость и угловое ускорение твердого тела при плоском движении. Независимость угловой скорости и углового ускорения от выбора полюса.
- •23)Вектор скорости отдельных точек твердого тела при плоском движении.
- •24)Определение векторов скоростей отдельных точек твердого тела при плоском движении с помощью мгновенного центра скоростей. Мгновенный центр вращения.
- •25)Теорема о проекции векторов двух точек твердого тела при плоском движении на прямую, соединяющие эти точки.
- •26)Вектор ускорения отдельных точек твердого тела при плоском движении. Мгновенный центр ускорений.
- •31. Векторы угловой скорости и углового ускорения свободного твердого тела.
- •32. Вектор скорости и ускорения отдельных точек свободного твердого тела.
- •33. Сложное (составное ) движение твердого тела. Сложение поступательных движений.
- •34. Сложение вращений твердого тела вокруг параллельных пересекающихся осей.
- •35. Пара вращений. Дифференциальные и планетарные механизмы.
- •36. Динамика как раздел теоретической механики.
- •37. Структура раздела динамики: динамика точки, системы материальных точек твердого тела, системы твердых сил.
- •38. Второй закон Ньютона. Инерциальные системы отчета. Границы применимости законов динамики.
- •39. Две основные задачи динамики.
- •40. Динамика материальной точки. Дифференциальные уравнения движения точки в векторной, координатной и естественной форме.
- •41. Решение двух основных задач динамики материальной точки.
- •42. Прямолинейные колебательные движения материальной точки. Свободные колебания. Затухающие колебания.
- •43. Вынужденные прямолинейные колебания материальной точки. Резонанс.
- •44. Несвободное движение точки. Связи, налагаемые на движение точки и их классификация.
- •47. Относительное движение материальной точки.
- •48. Динамика системы материальных точек, масса системы. Силы внутренние и внешние.
- •49. Влияние распределения массы системы материальных точек на её движения. Характеристики распределения масс системы материальных точек
- •50.Цент масс системы материальных точек. Моменты инерции системы.
- •51. Тензор инерции. Главные оси и главные моменты инерции.
- •52. Общие теоремы динамики и их назначение.
- •53. Вектор количества движения материальной точки.
- •54. Теорема об изменении вектора количества движении системы материальных точек и точки. Законы сохранения вектора кол-ва движения.
- •55. Движение тел переменной массы. Уравнение Мещерского.
- •56. Вектор момента количества движений материальной точки и системы материальных точек.
- •57. Теорема об изменении вектора момента количества движения материальной системы и точки.
- •58. Работа силы. Мощность.
- •59. Кинетическая энергия материальной точки. Кинетическая энергия твердого тела в различных случаях его движения.
- •60. Теоремы об изменении кинетической энергии материальной точки.
- •61. Силовое потенциальное поле. Потенциальная энергия. Закон сохранения механической энергии.
- •62. Динамика твердого тела. Дифференциальные уравнения поступательного движения твердого тела.
- •63. Дифференциальные уравнения вращения твердого тела вокруг неподвижной оси. Экспериментальное определение моментов инерции твердого тела.
- •64. Дифференциальные уравнения плоского движения твердого тела.
- •65. Понятия о гироскопах. Основные свойства гироскопов.
- •69. Явление удара. Прямой центральный удар. Действие ударных сил на твердое тело, вращающее вокруг неподвижной оси.
5)Кинематика точки. Основные задачи кинематики материальной точки.
Кинема́тика точки — раздел кинематики, изучающий математическое описание движения материальных точек. Основной задачей кинематики является описание движения при помощи математического аппарата без выяснения причин, вызывающих это движение.
Движение любого объекта в кинематике изучают по отношению к некоторой системе отсчета, включающей:
Тело отсчета;
Систему измерения положения тела в пространстве (систему координат);
Прибор для измерения времени (Часы).
Положение точки определяется набором обобщенных координат — упорядоченным набором числовых величин, полностью описывающих положение тела. В самом простом случае это координаты точки (радиус-вектора) в выбранной системе координат. Наиболее наглядное представление о радиус-векторе можно получить в евклидовой системе координат, поскольку базисв ней является фиксированным и общим для любого положения тела.
6)Способы задания движения материальной точки в векторной, координатной и естественной формах. Уравнения (законы) движения точки.
Материа́льнаято́чка — простейшая физическая модель в механике — математическая абстракция — тело, размеры которого допустимо считать бесконечно малыми в пределах допущений исследуемой задачи.
Практически под материальной точкой понимают обладающее массой тело, размерами и формой которого можно пренебречь при решении данной задачи.[1] Например, при расчёте пути, пройденного поездом, можно пренебречь его размерами, даже если путь измеряется сантиметрами.
При прямолинейном движении тела достаточно одной координатной оси для определения его положения.
Для решения задач кинематики необходимо, чтобы изучаемое движение было задано. Оно считается заданным, если в любой момент времени однозначно можно определить положение точки в пространстве относительно заданной системы отсчета. Используют три основных способа задания движения точки: векторный, координатный и естественный.
Векторный способ. Положение движущейся точки М в любой момент времени можно определить с помощью ее радиус-вектора, проведенного из центра О, связанного с телом отсчета, в точку М (рис. 1.1). Чтобы задать движение векторным способом, необходимо определить векторную функцию времени в виде:
(1.1)
Зависимость (1.1) называют уравнением движения точки в векторной форме. Начало радиус-вектора движущейся точки находится в точке О, а конец его перемещается по траектории вместе с точкой М. Геометрическое место концов радиус-вектора, т.е. годограф этого вектора, определяет траекторию движущейся точки.
Координатный способ. С телом отсчета связывают прямоугольную систему декартовых координат, при этом положение точки определяют ее координатами, которые являются скалярными функциями времени (рис. 1.2):
(1.2)
Уравнения (1.2) называют уравнениями движения точки в координатной форме. Они являются параметрическими уравнениями траектории точки. Исключив из этих уравнений параметр – время, можно получить уравнение траектории.
Между способами задания движения точки имеется связь. Так, если начало декартовой системы координат совпадает с центром, из которого проводится радиус-вектор точки при векторном способе изучения ее движения (см. рис. 1.2), то координаты точки равны проекциям на соответствующие оси радиус-вектора точки
,
где
–
единичные орты координатных осей.
Естественный способ. Этот способ используют в тех случаях, когда заранее известна траектория точки. На траектории выбирают неподвижную точку О (начало отсчета), а также положительное и отрицательное направления отсчета расстояний точки от начала отсчета (рис. 1.3). Тогда положение точки М на траектории будет однозначно определяться зависимостью криволинейной координаты S = ОМ от времени
(1.3)
С
вязь
между координатным и естественным
способами определяется выражением
,
где
–
первые производные от координат точки
по времени; С – постоянная
интегрирования, зависящая от начальных
условий.