
- •1)Предмет и место теоретической механики среди общеинженерных с специальных дисциплин:
- •2)Теоретическая механика как наука о наиболее общих законах механического движения материальных объектов.
- •3)Структура курса теоретической механики: статика, кинематика, динамика.
- •4)Кинематика, как раздел теоретической механики, изучающий движение материальных объектов с чисто геометрической точки зрения.
- •5)Кинематика точки. Основные задачи кинематики материальной точки.
- •6)Способы задания движения материальной точки в векторной, координатной и естественной формах. Уравнения (законы) движения точки.
- •7)Определение траектории движения точки по ее уравнениям движения в координатной форме. Связь между векторным, координатным и естественным способами задания движения точки.
- •10) Естественный (натуральный) трехгранник, вектор ускорения точки при естественном способе задания ее движения. Касательное и нормальное ускорение точки.
- •11)Равномерное и равнопеременное движение точки. Уравнения этих движений.
- •12)Сложное (составное)движение точки. Абсолютное, переносное и относительное движение точки.
- •13)Определение вектора абсолютной скорости точки при сложном движении.
- •14)Определение вектора абсолютного ускорения точки при сложном движении.
- •15)Кинематика твердого тела. Основные задачи кинематики твердого тела.
- •16)Поступательное движение твердого тела. Скорости и ускорения точек твердого тела при его поступательном движении.
- •17)Вращение твердого тела вокруг неподвижной оси. Уравнение вращения. Векторы угловой скорости и углового ускорения.
- •18)Равномерное и равнопеременное вращение твердого тела вокруг неподвижной оси. Законы этих вращений.
- •19)Скорости отдельных точек твердого тела при его вращении вокруг неподвижной оси. Передаточные отношения механических передач. Скорости и ускорения точек вращающегося тела.
- •20)Ускорение отдельных точек тела при его вращении вокруг неподвижной оси.
- •21)Плоскопараллельное движение твердого тела и движение плоской фигуры в своей плоскости. Уравнение (закон) плоского движения.
- •22)Угловая скорость и угловое ускорение твердого тела при плоском движении. Независимость угловой скорости и углового ускорения от выбора полюса.
- •23)Вектор скорости отдельных точек твердого тела при плоском движении.
- •24)Определение векторов скоростей отдельных точек твердого тела при плоском движении с помощью мгновенного центра скоростей. Мгновенный центр вращения.
- •25)Теорема о проекции векторов двух точек твердого тела при плоском движении на прямую, соединяющие эти точки.
- •26)Вектор ускорения отдельных точек твердого тела при плоском движении. Мгновенный центр ускорений.
- •31. Векторы угловой скорости и углового ускорения свободного твердого тела.
- •32. Вектор скорости и ускорения отдельных точек свободного твердого тела.
- •33. Сложное (составное ) движение твердого тела. Сложение поступательных движений.
- •34. Сложение вращений твердого тела вокруг параллельных пересекающихся осей.
- •35. Пара вращений. Дифференциальные и планетарные механизмы.
- •36. Динамика как раздел теоретической механики.
- •37. Структура раздела динамики: динамика точки, системы материальных точек твердого тела, системы твердых сил.
- •38. Второй закон Ньютона. Инерциальные системы отчета. Границы применимости законов динамики.
- •39. Две основные задачи динамики.
- •40. Динамика материальной точки. Дифференциальные уравнения движения точки в векторной, координатной и естественной форме.
- •41. Решение двух основных задач динамики материальной точки.
- •42. Прямолинейные колебательные движения материальной точки. Свободные колебания. Затухающие колебания.
- •43. Вынужденные прямолинейные колебания материальной точки. Резонанс.
- •44. Несвободное движение точки. Связи, налагаемые на движение точки и их классификация.
- •47. Относительное движение материальной точки.
- •48. Динамика системы материальных точек, масса системы. Силы внутренние и внешние.
- •49. Влияние распределения массы системы материальных точек на её движения. Характеристики распределения масс системы материальных точек
- •50.Цент масс системы материальных точек. Моменты инерции системы.
- •51. Тензор инерции. Главные оси и главные моменты инерции.
- •52. Общие теоремы динамики и их назначение.
- •53. Вектор количества движения материальной точки.
- •54. Теорема об изменении вектора количества движении системы материальных точек и точки. Законы сохранения вектора кол-ва движения.
- •55. Движение тел переменной массы. Уравнение Мещерского.
- •56. Вектор момента количества движений материальной точки и системы материальных точек.
- •57. Теорема об изменении вектора момента количества движения материальной системы и точки.
- •58. Работа силы. Мощность.
- •59. Кинетическая энергия материальной точки. Кинетическая энергия твердого тела в различных случаях его движения.
- •60. Теоремы об изменении кинетической энергии материальной точки.
- •61. Силовое потенциальное поле. Потенциальная энергия. Закон сохранения механической энергии.
- •62. Динамика твердого тела. Дифференциальные уравнения поступательного движения твердого тела.
- •63. Дифференциальные уравнения вращения твердого тела вокруг неподвижной оси. Экспериментальное определение моментов инерции твердого тела.
- •64. Дифференциальные уравнения плоского движения твердого тела.
- •65. Понятия о гироскопах. Основные свойства гироскопов.
- •69. Явление удара. Прямой центральный удар. Действие ударных сил на твердое тело, вращающее вокруг неподвижной оси.
69. Явление удара. Прямой центральный удар. Действие ударных сил на твердое тело, вращающее вокруг неподвижной оси.
Явление удара наблюдается во всех случаях, когда скорости соприкасающихся тел изменяются в течение очень малого промежутка времени.
Напряжения и деформации при ударном нагружении, называемые динамическими, оказываются значительно большими, чем те, которые возникли бы в данной системе при статическом приложении той же нагрузки.
Процесс удара жесткого груза об упругую стержневую систему протекает следующим образом. Сначала груз, движущийся с некоторой скоростью, входит в соприкосновение с системой, причем скорость его движения резко уменьшается.
Упругая система приходит в движение. Однако вследствие инерции массы системы ее частицы начинают перемещаться не одновременно. Чтобы волна деформации распространилась от места удара по всей системе, требуется некоторое время. Передний фронт волны движется по системе со скоростью распространения звука в данной среде. В стальных конструкциях, например, волна деформации распространяется со скоростью около 5000 м/с. После соприкосновения груз движется совместно с воспринимающей удар упругой системой, причем скорость их движения по мере роста деформаций и сил упругости системы постепенно уменьшается и становится равной нулю в момент наибольшей деформации. Затем начинается обратное движение, в дальнейшем система совершает колебательные движения.
Расчет на прочность и жесткость при ударной нагрузке требует определения напряжений и деформаций системы, воспринимающей удар.
При
назначении динамических допускаемых
напряжений следует учитывать изменение
механических характеристик материала.
Однако ввиду недостаточной изученности
этого вопроса расчет на прочность при
динамической нагрузке обычно ведут по
статическим характеристикам, то есть
условие прочности имеет следующий вид:
.
При ударе возникают деформации двух типов: местные деформации в зоне контакта и общие деформации системы. В дальнейшем рассматриваются только общие деформации системы, и предполагается, что динамические напряжения не превосходят предел пропорциональности материала. Задача определения контактных напряжений в месте удара сложна и не может быть решена простыми методами. Для приближенного определения напряжений и перемещений сечений в момент наибольшей деформации системы в практических расчетах обычно применяется энергетический метод. Этот метод решения применим в тех случаях, когда скорость ударяющего тела мала по сравнению со скоростью распространения фронта ударной волны, а время соударения значительно больше времени распространения этой волны по всей системе. Указанное ограничение дает основание считать, что при ударе деформации распространяются мгновенно по всей стержневой системе и все ее точки начинают движение одновременно.
При прямом центральном ударе векторы скоростей шаров до и после удара направлены вдоль одной прямой - линии удара. При прямом, центральном ударе линия удара проходит через центр тяжести обоих тел, и относительное движение представляет собою поступательное движение, параллельное линии удара, например удар двух шаров параллельно прямой, проходящей через центры. Обозначим через mi и т2 массы обоих тел, vt к vz - их скорости перед началом удара, и - их общая скорость в момент наибольшего взаимного давления, v [ и v 2 - скорости к концу удара.